Mostrando 8,061 - 8,080 Resultados de 8,091 Para Buscar '"Neutrino"', tiempo de consulta: 0.19s Limitar resultados
  1. 8061
    por Hoffmann , Maria
    Publicado 2016
    “…Four distinct analyses are presented, which are distinguished by the decay mode of the Z boson into either a pair of charged leptons (electrons or muons), into a pair of neutrinos or into a pair of quarks, denoted according to final-state, i.e. as 4l, 2l2ν, 2l2q and 2ν2q. …”
    Enlace del recurso
  2. 8062
    por Szalay, Marco
    Publicado 2018
    “…The Higgs production mechanisms under investigation are: ZH production ("Higgsstrahlung"), with the Z further decaying into neutrinos or quarks, and Vector Boson Fusion ("VBF"), in which two W bosons, radiated off a colliding electron-positron pair, combine to form a Higgs boson. …”
    Enlace del recurso
  3. 8063
    por Torterotot, Lucas
    Publicado 2021
    “…However, it is an arduous task due to existence of neutrinos as decay product of each τ lepton which are invisible to detectors at LHC. …”
    Enlace del recurso
  4. 8064
    por Mattmann, Johannes
    Publicado 2018
    “…In spite of the two neutrinos in the final state the signature of the final state is clearly selectable and can rely on the precise missing transverse momentum reconstruction of the ATLAS detector. …”
    Enlace del recurso
  5. 8065
    por Duehrssen, Michael
    Publicado 2009
    “…However, due to the neutrinos from the W boson decays, a complete reconstruction of the final sta te is not possible. …”
    Enlace del recurso
  6. 8066
    por Daci, Nadir
    Publicado 2014
    “…This cut helps controlling the trigger rate and selectsevents containing neutrinos, which are a distinguishing feature of the tau lepton decay.The invariant mass distributions for all background and signal processes allow toquantify the compatibility between the acquired data and the presence of a signal. …”
    Enlace del recurso
  7. 8067
    por Aubin, Alexandre
    Publicado 2016
    “…Cette recherche se base sur les événements contenant exactement un lepton, au moins quatre jets dont au moins un est étiquetté comme provenant d'un quark $b$, et une grande quantité d'énergie transverse manquante signant la production de neutrinos et possiblement de neutralinos. Le travail de cette thèse a d'abord permis d'améliorer la rejection d'un des bruits de fond majeurs de l'analyse. …”
    Enlace del recurso
  8. 8068
    “…Other findings, which should also be mentioned, are the W and Z bosons, creation of antimatter, violation of charge parity symmetry and light neutrinos and many others. The results of these activities have directly influenced society and improved it. …”
    Enlace del recurso
  9. 8069
    por Todd, Benjamin
    Publicado 2006
    “…The Beam Interlock System has been designed to provide the LHC and its injector chain, as well as the SPS and its transfer lines, including the CERN Neutrinos to Gran Sasso project, with an unsurpassed level of protection. …”
    Enlace del recurso
  10. 8070
    por Quintieri, L
    Publicado 2002
    “…. \\ \\In addition to the search for short bursts, the data collected by EXPLORER are now used to search for periodic waves over long time periods, for measuring the stochastic background of cosmological origin, and for studying possible correlations with other astrophysical phenomena, such as gamma ray bursts and neutrinos emitted by gravitational collapses.\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\\\ \\…”
    Enlace del recurso
  11. 8071
    por Achard, P., Adriani, O., Aguilar-Benitez, M., Alcaraz, J., Alemanni, G., Allaby, J., Aloisio, A., Alviggi, M.G., Anderhub, H., Andreev, Valery P., Anselmo, F., Arefev, A., Azemoon, T., Aziz, T., Bagnaia, P., Bajo, A., Baksay, G., Baksay, L., Baldew, S.V., Banerjee, S., Banerjee, Sw., Barczyk, A., Barillere, R., Bartalini, P., Basile, M., Batalova, N., Battiston, R., Bay, A., Becattini, F., Becker, U., Behner, F., Bellucci, L., Berbeco, R., Berdugo, J., Berges, P., Bertucci, B., Betev, B.L., Biasini, M., Biglietti, M., Biland, A., Blaising, J.J., Blyth, S.C., Bobbink, G.J., Bohm, A., Boldizsar, L., Borgia, B., Bottai, S., Bourilkov, D., Bourquin, M., Braccini, S., Branson, J.G., Brochu, F., Burger, J.D., Burger, W.J., Cai, X.D., Capell, M., Cara Romeo, G., Carlino, G., Cartacci, A., Casaus, J., Cavallari, F., Cavallo, N., Cecchi, C., Cerrada, M., Chamizo, M., Chang, Y.H., Chemarin, M., Chen, A., Chen, G., Chen, G.M., Chen, H.F., Chen, H.S., Chiefari, G., Cifarelli, L., Cindolo, F., Clare, I., Clare, R., Coignet, G., Colino, N., Costantini, S., de la Cruz, B., Cucciarelli, S., van Dalen, J.A., de Asmundis, R., Deglon, P., Debreczeni, J., Degre, A., Dehmelt, K., Deiters, K., della Volpe, D., Delmeire, E., Denes, P., DeNotaristefani, F., De Salvo, A., Diemoz, M., Dierckxsens, M., Dionisi, C., Dittmar, M., Doria, A., Dova, M.T., Duchesneau, D., Duda, M., Echenard, B., Eline, A., El Hage, A., El Mamouni, H., Engler, A., Eppling, F.J., Extermann, P., Falagan, M.A., Falciano, S., Favara, A., Fay, J., Fedin, O., Felcini, M., Ferguson, T., Fesefeldt, H., Fiandrini, E., Field, J.H., Filthaut, F., Fisher, P.H., Fisher, W., Fisk, I., Forconi, G., Freudenreich, K., Furetta, C., Galaktionov, Iouri, Ganguli, S.N., Garcia-Abia, Pablo, Gataullin, M., Gentile, S., Giagu, S., Gong, Z.F., Grenier, Gerald Jean, Grimm, O., Gruenewald, M.W., Guida, M., van Gulik, R., Gupta, V.K., Gurtu, A., Gutay, L.J., Haas, D., Hakobyan, R.S., Hansen, J.M., Hatzifotiadou, D., Hebbeker, T., Herve, Alain, Hirschfelder, J., Hofer, H., Hohlmann, M., Holzner, G., Hou, S.R., Hu, Y., Jin, B.N., Jones, Lawrence W., de Jong, P., Josa-Mutuberria, I., Kafer, D., Kaur, M., Kienzle-Focacci, M.N., Kim, J.K., Kirkby, Jasper, Kittel, W., Klimentov, A., Konig, A.C., Kopal, M., Koutsenko, V., Kraber, M., Kraemer, R.W., Kruger, A., Kunin, A., Ladron de Guevara, P., Laktineh, I., Landi, G., Lebeau, M., Lebedev, A., Lebrun, P., Lecomte, P., Lecoq, P., Le Coultre, P., Le Goff, J.M., Leiste, R., Levtchenko, M., Levtchenko, P., Li, C., Likhoded, S., Lin, C.H., Lin, W.T., Linde, F.L., Lista, L., Liu, Z.A., Lohmann, W., Longo, E., Lu, Y.S., Luci, C., Luminari, L., Lustermann, W., Ma, W.G., Malgeri, L., Malinin, A., Mana, C., Mans, J., Martin, J.P., Marzano, F., Mazumdar, K., McNeil, R.R., Mele, S., Merola, L., Meschini, M., Metzger, W.J., Mihul, A., Milcent, H., Mirabelli, G., Mnich, J., Mohanty, G.B., Muanza, G.S., Muijs, A.J.M., Musicar, B., Musy, M., Nagy, S., Natale, S., Napolitano, M., Nessi-Tedaldi, F., Newman, H., Nisati, A., Kluge, Hannelies, Ofierzynski, R., Organtini, G., Pal, I., Palomares, C., Paolucci, P., Paramatti, R., Passaleva, G., Patricelli, S., Paul, Thomas Cantzon, Pauluzzi, M., Paus, C., Pauss, F., Pedace, M., Pensotti, S., Perret-Gallix, D., Petersen, B., Piccolo, D., Pierella, F., Pioppi, M., Piroue, P.A., Pistolesi, E., Plyaskin, V., Pohl, M., Pojidaev, V., Pothier, J., Prokofev, D., Quartieri, J., Rahal-Callot, G., Rahaman, Mohammad Azizur, Raics, P., Raja, N., Ramelli, R., Rancoita, P.G., Ranieri, R., Raspereza, A., Razis, P., Ren, D., Rescigno, M., Reucroft, S., Riemann, S., Riles, Keith, Roe, B.P., Romero, L., Rosca, A., Rosier-Lees, S., Roth, Stefan, Rosenbleck, C., Rubio, J.A., Ruggiero, G., Rykaczewski, H., Sakharov, A., Saremi, S., Sarkar, S., Salicio, J., Sanchez, E., Schafer, C., Schegelsky, V., Schopper, H., Schotanus, D.J., Sciacca, C., Servoli, L., Shevchenko, S., Shivarov, N., Shoutko, V., Shumilov, E., Shvorob, A., Son, D., Souga, C., Spillantini, P., Steuer, M., Stickland, D.P., Stoyanov, B., Straessner, A., Sudhakar, K., Sultanov, G., Sun, L.Z., Sushkov, S., Suter, H., Swain, J.D., Szillasi, Z., Tang, X.W., Tarjan, P., Tauscher, L., Taylor, L., Tellili, B., Teyssier, D., Timmermans, Charles, Ting, Samuel C.C., Ting, S.M., Tonwar, S.C., Toth, J., Tully, C., Tung, K.L., Ulbricht, J., Valente, E., Van de Walle, R.T., Vasquez, R., Veszpremi, V., Vesztergombi, G., Vetlitsky, I., Vicinanza, D., Viertel, G., Villa, S., Vivargent, M., Vlachos, S., Vodopianov, I., Vogel, H., Vogt, H., Vorobev, I., Vorobyov, A.A., Wadhwa, M., Wang, Q., Wang, X.L., Wang, Z.M., Weber, M., Wienemann, P., Wilkens, H., Wynhoff, S., Xia, L., Xu, Z.Z., Yamamoto, J., Yang, B.Z., Yang, C.G., Yang, H.J., Yang, M., Yeh, S.C., Zalite, A., Zalite, Yu., Zhang, Z.P., Zhao, J., Zhu, G.Y., Zhu, R.Y., Zhuang, H.L., Zichichi, A., Zimmermann, B., Zoller, M.
    Publicado 2003
    Enlace del recurso
    Enlace del recurso
  12. 8072
    por Szadkowski, Z
    Publicado 2009
    “…These cosmic particles carry information complementary to neutrinos and photons and to gravitational waves. They also provide an extremely energetic beam for the study of particle interactions at energies that thirty times higher than those reached in terrestrial accelerators. …”
    Enlace del recurso
    info:eu-repo/semantics/article
  13. 8073
    por Jain, Pankaj
    Publicado 2015
    “…IntroductionOverviewScales and DimensionsNight SkyConstellationsEarth, Sun, and the Solar SystemRetrograde Motion of PlanetsSidereal TimeAstronomical Catalogs and SoftwareObservationsElectromagnetic WavesElectromagnetic SpectrumTelescopesRefractor TelescopeReflecting TelescopeObservations at Visible FrequenciesTheoretical Limit on ResolutionSeeingMounting of TelescopeEquatorial MountAzimuthal MountInterferometerObservations at Other WavelengthsAstrometryCoordinate SystemsThe Horizontal SystemEquatorial Coordinate SystemEcliptic SystemGalactic Coordinate SystemSupergalactic Coordinate SystemSpace Velocity and Proper Motion of StarsDoppler EffectParallaxAberrationCoordinate TransformationsTransformation between Equatorial and Ecliptic Coordinate SystemsPrecession of EquinoxesEquatorial Mounting of a TelescopePhotometryIntroductionFlux Density and IntensityBlackbody RadiationEnergy Density in an Isotropic Radiation FieldMagnitude ScaleApparent MagnitudeAbsolute MagnitudeThe Color IndexBolometric MagnitudeStellar TemperaturesEffective TemperatureColor TemperatureAppendix: Solid AngleGravitation and Kepler's LawsTwo-Body ProblemApplication to Solar SystemVirial TheoremTidal Forces and Roche LimitStars, Stellar Spectra, and ClassificationIntroductionStellar Spectra Harvard Classification of Stellar SpectraSaha Equation Derivation of the Saha Equation Number of States of a Free Particle in a BoxHR DiagramStar Clusters and AssociationsDistance and Age Determination of Clusters using Color-Magnitude DiagramRadiation from Astronomical SourcesContinuous SpectraSynchrotron RadiationBremsstrahlungCompton ScatteringBound-Free TransitionsAbsorption and Emission Line SpectrumRadial Velocity due to Doppler EffectCauses of Finite Width of Spectral LinesMolecular Band SpectraExtinctionExtinction CoefficientColor ExcessStellar StructurePressure GradientMass DistributionEnergy ProductionTemperature GradientRadiative TransportConvective TransportBoundary ConditionsRosseland Mean OpacityEquation of StateIdeal Gas LawStellar Energy SourcesAppendix: Maxwell-Boltzmann DistributionStellar Nuclear ReactionsFundamental InteractionsFundamental ParticlesA Brief Introduction to NeutrinosPP Chain Nuclear Reaction RateNuclear Reaction Rate: DerivationNuclear Cross-SectionEstimating the Nuclear Reaction RateEnergy Released in Nuclear ReactionsStandard Solar ModelStar Formation and Stellar EvolutionEarly Stage of Star FormationFragmentationEvolution on the Main SequenceDegenerate Free Electron GasEvolution beyond the Main SequencePopulation I and II StarsWhite DwarfsNeutron StarBlack HolesSupernovaThe SunSolar AtmospherePhotosphereChromosphereCoronaDynamo Mechanism for Magnetic Field EnhancementSunspots and the Solar CycleSome Transient Phenomena The Solar SystemOrbital Properties of PlanetsRetrograde Motion of PlanetsAlbedo and Temperature of PlanetsTerrestrial Planets: Interior StructureJovian PlanetsThe MoonEclipses and OccultationsWhy Did Pluto Lose Its Planetship?…”
    Enlace del recurso
  14. 8074
    por Dumitriu, Ana Elena
    Publicado 2018
    “…The third chapter is dealing with a measure of the performances of the ATLAS electromagnetic calorimeter, namely the study of the electron identification efficiencies using W decaying into electrons and neutrinos events. The Run 2 data set taken in 2015 and 2016 provides new experimental challenges due to the increase in collision energy and peak luminosity, hence higher particle pileup. …”
    Enlace del recurso
  15. 8075
    por Kumar, Arun
    Publicado 2020
    “…Selection criteria is based on the properties of the signal final state, which is high transverse missing energy ($E$$_{T}^{miss}$) arising from two T undetected neutrinos and two same flavor leptons (electrons or muons) consistent with Z boson decay. …”
    Enlace del recurso
  16. 8076
    “…After this success Crystal clear has continued its investigation on new scintillators and the understanding of scintillation mechanisms and light transfer properties in particular : The understanding of cerium ion as activator, The development of LuAP, LuYAP crystals for medical imaging applications, (CERN patent) Investigation of Ytterbium based scintillators for solar neutrinos spectroscopy and more recently on LuAG crystals. …”
    Enlace del recurso
  17. 8077
    por Mastrolorenzo, Luca
    Publicado 2016
    “…The Higgs boson decaying to tau lepton analysis is particularly challenging at the trigger level because the selection of tau leptons relies on its decay into electron and muon whose energy spectrum is relatively soft because of the two neutrinos in the decay chain. The higher threshold on single physics objects has thus a severe impact on the signal acceptance. …”
    Enlace del recurso
  18. 8078
    por Stoerig, Kathrin
    Publicado 2013
    “…Nevertheless, the low acceptance could be outmatched by the large QCD cross-section, leading to a significant contamination of the signal regions: As typical QCD multijet events possess only few real missing energy, additional sources of MET are needed, e.g. from leptonic decays of heavy quarks producing neutrinos or only apparent missing transverse energy from mismeasurements. …”
    Enlace del recurso
  19. 8079
  20. 8080
    por Bhopatkar, Vallary Shashikant
    Publicado 2017
    “…A search for Standard Model (SM) Higgs bosons decaying into pairs of tau leptons and then to two muons plus (anti)-neutrinos is performed using the data collected by the CMS detector in 2016 with 35.9 fb$^{-1}$ of integrated luminosity. …”
    Enlace del recurso
Herramientas de búsqueda: RSS