Mostrando 5,541 - 5,560 Resultados de 6,833 Para Buscar '"Python"', tiempo de consulta: 0.19s Limitar resultados
  1. 5541
    “…Kinematic data were extracted from videos post-hoc using the Python-based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy) approaches were used to extract kinematic episodes from threshold derived kinematic fluctuations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 5542
    “…Then we select 10 low-cost airlines and 10 full-service airlines, respectively, according to the number of reviews sorted by the TripAdvisor website, and use crawling techniques to obtain 10,485 reviews related to COVID-19 safety of the above companies from December 2019 to date, and conduct safety perception sentiment analysis based on Python’s Textblob library. Finally, to avoid data overdispersion, the model is empirically analyzed by negative binomial regression using R software. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 5543
    “…Publication information, citations, authors, commonly used terms, and affiliated institutions and countries were analyzed by VOSviewer and Python. RESULTS: A total of 553 articles were included for analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 5544
    “…In order to accurate assessment of particulate matter concentration, a new model was proposed to resample cement plant time series data using Pandas in Python. The effect of meteorological parameters including wind speed, relative humidity, air temperature and rainfall on the particulate matter concentration was investigated through statistical analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 5545
  6. 5546
    “…Statistical Package for Social Sciences (SPSS) 26.0 and Python 3.9 were used for statistical analysis and visualization, and a p-value of less than 0.05 was considered statistically significant. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 5547
    “…Datasets processing, bioinformatics analyses, and visualizations were performed with the packages of Python and R. Cell proliferations were demonstrated via CCK8 assays and colony formation assays, and in vivo xenograft experiments. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 5548
    “…METHODS: We collected comments using Python-based web-scraping tools from the New York Times, YouTube, Twitter, and Reddit. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 5549
    “…Methods: We analyzed AS swept-source (SS)-OCT (CASIA 2) images of 31 patients (51 eyes) with uveitis using image analysis software (Python). An automated algorithm was developed to detect cellular spots corresponding to hyper-reflective spots in the AC, and the correlation with Standardization of Uveitis Nomenclature (SUN) grading AC cells score was evaluated. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 5550
    por Şen, Şamil
    Publicado 2022
    “…A dataset consisting of 331 samples from 19 wells of various locations of the world-class organic-rich shales of the Niobrara, Eagle Ford, Barnett, Haynesville, Woodford, Vaca Muerta and Dadaş has been used to determination of a DL model for S1 volumes prediction using Python 3 programing environment with Tensorflow and Keras open-source libraries. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 5551
    “…CONCLUSIONS: We packaged all 4 models as a Python-based deep learning classification tool called TULIP (TUmor CLassIfication Predictor) for performing quality control on primary tumor samples and characterizing cancer samples of unknown tumor type. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 5552
    “…This approach leverages structured covariation across individual experiences and is available in Neighbors, an open-source Python toolbox. We validate our approach across three different experimental contexts by recovering dense individual ratings using only a small subset of the original data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 5553
    “…Survey responses were analyzed using Python for statistical analysis. RESULTS: Sixty-five respondents completed the survey. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 5554
    “…Simulations are conducted in Python 3.4 to model the propagation of COVID-19 between Feb, 6 to Mar 20, 2020 in China. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 5555
    “…All the models were trained using the open-source Python library scikit-survival version 0.16.0. Shapley additive explanations method was used to help clinicians better understand the obtained results. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 5556
  17. 5557
  18. 5558
    “…Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 5559
    “…We present an open-source software called similarity downselection (SDS), written in Python and freely available on GitHub. SDS implements a heuristic algorithm for quickly finding the approximate set(s) of the n most dissimilar items. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 5560
    “…Five machine learning methods (KNN algorithm, logistic regression algorithm, random forest algorithm, support vector machine, and XGBoost algorithm) were compared to evaluate their performances in prediction accuracy. R 3.6.3 and Python 3.12 were used in data analysis. RESULTS: The statistical variables for which p< 0.05 was obtained were BMI, pulse, Na, Cl, AKP. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS