-
1por Rajagopal, Nisha, Xie, Wei, Li, Yan, Wagner, Uli, Wang, Wei, Stamatoyannopoulos, John, Ernst, Jason, Kellis, Manolis, Ren, Bing“…We show that RFECS not only leads to more accurate and precise prediction of enhancers than previous methods, but also helps identify the most informative and robust set of three chromatin marks for enhancer prediction.…”
Publicado 2013
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
2“…Remote-Field Eddy-Current (RFEC) technology is often used as a Non-Destructive Evaluation (NDE) method to prevent water pipe failures. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
3
-
4por May, Katharina, Scheper, Carsten, Brügemann, Kerstin, Yin, Tong, Strube, Christina, Korkuć, Paula, Brockmann, Gudrun A., König, Sven“…Afterwards, the precorrected phenotypes were the dependent traits (rFEC-GIN, rFEC-FH, and rFLC-DV) in GWAS based on 423,654 SNPs from 148 DSN cows. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
5“…Without the restriction of skin effect, remote field eddy current (RFEC) has great advantages in detecting buried depth defects. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
6“…We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
7Distinct and Predictive Histone Lysine Acetylation Patterns at Promoters, Enhancers, and Gene Bodiespor Rajagopal, Nisha, Ernst, Jason, Ray, Pradipta, Wu, Jie, Zhang, Michael, Kellis, Manolis, Ren, Bing“…We previously developed an algorithm RFECS to discover the most informative modifications associated with the classification or prediction of mammalian enhancers. …”
Publicado 2014
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
8por Kim, Seong Gon, Theera-Ampornpunt, Nawanol, Fang, Chih-Hao, Harwani, Mrudul, Grama, Ananth, Chaterji, Somali“…We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS. RESULTS: We find that EP-DNN has superior accuracy and takes less time to make predictions. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
9por Fang, Chih-Hao, Theera-Ampornpunt, Nawanol, Roth, Michael A., Grama, Ananth, Chaterji, Somali“…Specifically, Aikyatan-CNN achieved 40% higher validation rate versus CSIANN and the same accuracy as RFECS. CONCLUSIONS: Our exhaustive experiments using an array of ML tools validate the need for a model that is not only expressive but can scale with increasing data volumes and diversity. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto