Mostrando 101 - 120 Resultados de 165 Para Buscar '"Sina Weibo"', tiempo de consulta: 0.12s Limitar resultados
  1. 101
    “…In total, 820 COVID-19 fact-checks from 413 Chinese Government Sina Weibo accounts were obtained and evaluated. Results show that both peripheral and central cues play important roles in the sharing of fact-checks. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 102
    por Duan, Sutian, Shen, Zhiyong, Luo, Xiao
    Publicado 2022
    “…Based on data from more than 10,000 geolocated Sina Weibo comments posted over one week (from 19 to 25 July 2021) in Shanghai and using a machine learning algorithm for attention mechanism, this study calculates the sentiment label and sentiment intensity of each comment. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 103
    “…In this paper, about 200,000 pieces of text data were collected from Jan. 1 to Feb. 26, 2020 from Sina Weibo, which is the most popular microblog website in China. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 104
    “…The current study contributes to the understanding on DCGSM by 16,822 posts crawled from the official Sina Weibo accounts of 104 Chinese health commissions in prefecture-level cities during the first wave of the COVID-19 pandemic. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 105
    por Huang, Ru, Wang, Xiuli
    Publicado 2023
    “…In this article, we attempted to use the social text data about COVID-19 on Sina Weibo (the largest “tweet” platform in China, and we will also call Weibo as tweet in the following content), to explore the impact of COVID-19 on the mental health of Chinese people. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 106
    “…In response to this sudden situation, we conducted data mining on topics and discussions related to the opening of the epidemic on Sina Weibo, collecting 125,686 interactive comments. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 107
    “…Recently, the use of social networks such as Facebook, Twitter, and Sina Weibo has become an inseparable part of our daily lives. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 108
    “…To study the quantification of the general spreading patterns and unique dynamic evolution of emergency-related information, we build a systematic, comprehensive evaluation framework and apply it to 81 million reposts from Sina Weibo, Chinese largest online microblogging platform, and perform a comparative analysis with four other types of online information (political, social, techs, and entertainment news). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 109
    “…We collected data on 22,005 active Sina Weibo users from 31 December 2019 to 8 February 2020 to measure their emotions (including disgust, happiness, and fear), cultural values (individualism and collectivism), moral concern (including purity vice, fairness vice, and authority virtue), and behavioral intentions (including isolation intention, protection intention, and aid intention) using Text Mind software and related dictionaries. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 110
    Publicado 2020
    “…Public sentiment analysis during the outbreak provides insightful information in making appropriate public health responses. On Sina Weibo, a popular Chinese social media, posts with negative sentiment are valuable in analyzing public concerns. 999,978 randomly selected COVID-19 related Weibo posts from 1 January 2020 to 18 February 2020 are analyzed. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 111
    “…This study thus aims to reveal the factors influencing the acceptance of fake news rebuttals on Sina Weibo. Drawing on the elaboration likelihood model (ELM), we used text mining and the econometrics method to investigate the relationships among the central route (rebuttal's information readability and argument quality), peripheral route (rebuttal's source credibility, including authority and influence), and rebuttal acceptance, as well as the moderating effect of receiver's cognitive ability on these relationships. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 112
    por Jiang, Qiaolei, Liu, Shiyu, Hu, Yue, Xu, Jing
    Publicado 2022
    “…Face mask-related posts on Sina Weibo from January 1, 2020, to June 30, 2020, were retrieved and studied. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 113
    “…RESULTS: The public's usage trend of the Baidu search engine and Sina Weibo was consistent during the COVID-19 outbreak. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 114
    por Liu, Jiaqi, Qi, Jiayin
    Publicado 2022
    “…Therefore, this paper constructs an interactive infection model of multiple rumor engagers under different intervention situations based on a unique user-aggregated dataset collected from a Chinese leading online microblogging platform (“Sina Weibo”) during the COVID-19 in 2020. The simulation result shows that (1) in the period of social psychological alarm reaction, the strong level of hindering intervention on the rumor engagers leads to more serious negative consequences; (2) in the period of social psychological resistance, the persuasion and hindering strategies can both produce good outcomes, which can effectively reduce the overall scale of rumor supporters and amplifiers and shorten their survival time in social media; (3) in the period of social psychological exhaustion, rumor intervention strategies are not able to have a significant impact; (4) the greater the intensity of intervention, the more obvious the outcome. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 115
    por Wang, Dandan, Zhou, Yadong
    Publicado 2022
    “…To eliminate the impact of contradictory information on vaccine hesitancy on social media, this research developed a framework to compare the popularity of information expressing contradictory attitudes towards COVID-19 vaccine or vaccination, mine the similarities and differences among contradictory information's characteristics, and determine which factors influenced the popularity mostly. We called Sina Weibo API to collect data. Firstly, to extract multi-dimensional features from original tweets and quantify their popularity, content analysis, sentiment computing and k-medoids clustering were used. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 116
    por Lin, Hangfeng, Bu, Naiqing
    Publicado 2022
    “…Finally, experiments on Sina-Weibo and Twitter opinion data sets show that the improved TF-IDF-COR and the COR-CNN model have better classification performance than traditional classification models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 117
    por Wang, Han, Sun, Kun, Wang, Yuwei
    Publicado 2022
    “…A total of 121,632 points of data relating to omicron on Sina Weibo from 0:00 27 November 2021 to 23:59:59 30 March 2022 (Beijing time) were collected and analyzed with LDA-based topic modeling and DLUT-Emotion ontology-based sentiment analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 118
    “…The theoretical model is tested using 12,101 textual data about COVID-19 collected from Sina Weibo, a leading social media platform in China. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 119
    “…METHODS: Multi-source electronic data, including historical percentage of influenza-like illness (ILI%), weather data, Baidu search index and Sina Weibo data of Chongqing, China, were collected and integrated into an innovative Self-adaptive AI Model (SAAIM), which was constructed by integrating Seasonal Autoregressive Integrated Moving Average model and XGBoost model using a self-adaptive weight adjustment mechanism. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 120
    “…This study explored public opinion in the early stages of COVID-19 in China by analyzing Sina-Weibo (a Twitter-like microblogging system in China) texts in terms of space, time, and content. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS