Materias dentro de su búsqueda.
Mostrando 4,481 - 4,500 Resultados de 6,033 Para Buscar '"Spheroid', tiempo de consulta: 0.21s Limitar resultados
  1. 4481
    “…In 3D cell culture (spheroids), receptor activation is accessible for at least 5 days, which compares favorably with other state of the art receptor designs.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 4482
    “…We explore the role of individual cell properties on spheroids of mouse muscle precursor cells and investigate the role of intermediate filaments on surface tension and Young’s modulus. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 4483
    “…Hence, the main characteristics of different BC structures—such as membranes and films, fibrous and spheroidal, nanocrystals and nanofibers, and different BC blends, as well as recent advances in BC composites with alginate, collagen, chitosan, silk sericin, and some miscellaneous blends—are reported in detail. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 4484
    por Giordano, Stefano
    Publicado 2009
    “…The analysis ranges from parallel spheroidal inclusions to completely random oriented inclusions. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 4485
    “…In addition, this heparinoid-nanovehicle exhibited selective homing to NPs in cancer cells in three-dimensional (3D) coculture spheroids, thus providing a novel target for cancer therapy and diagnostics in the tumor microenvironment (TME).…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 4486
    “…Furthermore, growth inhibition was examined in cancer cell spheroids. RESULTS: All the tested seven types of cytotoxic anticancer drugs combined with nanvuranlat significantly inhibited the cell growth of pancreatic cancer MIA PaCa-2 cells compared to their single treatment. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 4487
    “…RESULTS: Electron micrographs of the purified viral preparation showed spheroidal particles with a diameter of 18 nm and three bacilliform particles with lengths of roughly 55, 68, and 110 nm and diameters identical to those of the spheroidal particles. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 4488
    “…Coculture of human H1299 NSCLC cells, primary peripheral blood mononuclear cells and fibroblasts mimicking the human stromal-tumor microenvironment was used to assess the effects of AhR inhibition on human immune cells. Furthermore, tumor spheroids cocultured with tumor antigen-specific MART-1 T cells were used to study the antigen-specific cytotoxic T cell responses. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 4489
    “…Ishikawa cells were used to investigate the functional consequences of CDH6 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids in vitro. CDH6 knockdown was assessed by qPCR and immunoblotting. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 4490
    “…METHODS: In this study, immunohistochemistry assay and western blot assay were used to detect protein expression in the primary tumor and peritoneal multi-cellular aggregates/spheroids (MCAs/MCSs). OCSCs induced from cell line SKOV3 and HO-8910 were enriched in a serum-free medium (SFM). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 4491
    “…Ishikawa cells were used as an endometrial epithelial model to investigate the functional consequences of MAML1 knockdown on endometrial adhesive capacity to HTR8/SVneo (trophoblast cell line) spheroids. After MAML1 knockdown in Ishikawa cells, the expression of endometrial receptivity markers and Notch dependent and independent pathway members were assessed by qPCR. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 4492
    “…Using 2nd line HER2 inhibitor lapatinib resistant 3-dimensional model systems, we assessed the effects of the drugs on ErbB2 positive breast cancer spheroids and developed a high-throughput invasion assay for HER2 positive ovarian cancer organoids for further evaluation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 4493
  14. 4494
    “…RGD-Lf-LP can also significantly increase penetration of U87 MG tumor spheroids, and RGD modification plays a dominating role on promoting the penetration of U87 MG tumor spheroids. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 4495
  16. 4496
    por Abdalla, H., Aharonian, F., Ait Benkhali, F., Angüner, E.O., Arakawa, M., Arcaro, C., Armand, C., Arrieta, M., Backes, M., Barnard, M., Becherini, Y., Becker Tjus, J., Berge, D., Bernhard, S., Bernlöhr, K., Blackwell, R., Böttcher, M., Boisson, C., Bolmont, J., Bonnefoy, S., Bordas, P., Bregeon, J., Brun, F., Brun, P., Bryan, M., Büchele, M., Bulik, T., Bylund, T., Capasso, M., Caroff, S., Carosi, A., Casanova, S., Cerruti, M., Chakraborty, N., Chandra, S., Chaves, R.C.G., Chen, A., Colafrancesco, S., Condon, B., Davids, I.D., Deil, C., Devin, J., deWilt, P., Dirson, L., Djannati-Atai, A., Dmytriiev, A., Donath, A., Doroshenko, V., Drury, L.O'C., Dyks, J., Egberts, K., Emery, G., Ernenwein, J.-P., Eschbach, S., Fegan, S., Fiasson, A., Fontaine, G., Funk, S., Füßling, M., Gabici, S., Gallant, Y.A., Gaté, F., Giavitto, G., Glawion, D., Glicenstein, J.F., Gottschall, D., Grondin, M.-H., Hahn, J., Haupt, M., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J.A., Hofmann, W., Hoischen, C., Holch, T.L., Holler, M., Horns, D., Huber, D., Iwasaki, H., Jacholkowska, A., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jouvin, L., Jung-Richardt, I., Kastendieck, M.A., Katarzyński, K., Katsuragawa, M., Katz, U., Kerszberg, D., Khangulyan, D., Khélifi, B., King, J., Klepser, S., Kluźniak, W., Komin, Nu., Kosack, K., Krakau, S., Kraus, M., Krüger, P.P., Lamanna, G., Lau, J., Lefaucheur, J., Lemière, A., Lemoine-Goumard, M., Lenain, J.-P., Leser, E., Lohse, T., Lorentz, M., López-Coto, R., Lypova, I., Malyshev, D., Marandon, V., Marcowith, A., Mariaud, C., Martí-Devesa, G., Marx, R., Maurin, G., Meintjes, P.J., Mitchell, A.M.W., Moderski, R., Mohamed, M., Mohrmann, L., Moulin, E., Murach, T., Nakashima, S., de Naurois, M., Ndiyavala, H., Niederwanger, F., Niemiec, J., Oakes, L., O'Brien, P., Odaka, H., Ohm, S., Ostrowski, M., Oya, I., Padovani, M., Panter, M., Parsons, R.D., Perennes, C., Petrucci, P.-O., Peyaud, B., Piel, Q., Pita, S., Poireau, V., Priyana Noel, A., Prokhorov, D.A., Prokoph, H., Pühlhofer, G., Punch, M., Quirrenbach, A., Raab, S., Rauth, R., Reimer, A., Reimer, O., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sahakian, V., Saito, S., Sanchez, D.A., Santangelo, A., Sasaki, M., Schlickeiser, R., Schüssler, F., Schulz, A., Schwanke, U., Schwemmer, S., Seglar-Arroyo, M., Senniappan, M., Seyffert, A.S., Shafi, N., Shilon, I., Shiningayamwe, K., Simoni, R., Sinha, A., Sol, H., Spanier, F., Specovius, A., Spir-Jacob, M., Stawarz, L., Steenkamp, R., Stegmann, C., Steppa, C., Takahashi, T., Tavernet, J.-P., Tavernier, T., Taylor, A.M., Terrier, R., Tibaldo, L., Tiziani, D., Tluczykont, M., Trichard, C., Tsirou, M., Tsuji, N., Tuffs, R., Uchiyama, Y., van der Walt, D.J., van Eldik, C., van Rensburg, C., van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Viana, A., Vincent, P., Vink, J., Voisin, F., Völk, H.J., Vuillaume, T., Wadiasingh, Z., Wagner, S.J., Wagner, R.M., White, R., Wierzcholska, A., Yang, R., Zaborov, D., Zacharias, M., Zanin, R., Zdziarski, A.A., Zech, A., Zefi, F., Ziegler, A., Zorn, J., Żywucka, N., Cirelli, M., Panci, P., Sala, F., Silk, J., Taoso, M.
    Publicado 2018
    “…Dwarf spheroidal galaxies are among the most promising targets for detecting signals of Dark Matter (DM) annihilations. …”
    Enlace del recurso
    Enlace del recurso
  17. 4497
    “…Tellu was trained by manual annotation of >20,000 intestinal organoids to identify cystic non-budding organoids, early organoids, late organoids and spheroids. Tellu can also be used to quantify the relative organoid size, and can classify intestinal organoids into these four subclasses with accuracy comparable to that of trained scientists but is significantly faster and without bias. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 4498
    “…The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 4499
    “…We corroborated this by characterising the ECM surrounding live breast cancer cells in two distinct culture systems, cell clusters in 3D hydrogels and spheroids in suspension culture. This cutting-edge instrument will transform the exploration of drug transport through complex cell culture matrices and optimise the design of the next-generation of disease models.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 4500
    “…OTCCP was used to classify a panel of human breast cancer cells, grown as 2D monolayer or 3D tumor spheroids using early endosomes, mitochondria, and their inter-organelle contacts. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS