Mostrando 181 - 200 Resultados de 243 Para Buscar '"The Financial Times"', tiempo de consulta: 1.62s Limitar resultados
  1. 181
    “…While the SAX representation is used to describe the financial time series, the evolutionary optimization kernel is used in order to identify the most relevant patterns and generate investment rules. …”
    Enlace del recurso
    Enlace del recurso
  2. 182
    por Wu, Zhiyong, Zhang, Wei
    Publicado 2019
    “…Fractional refined composite multiscale fuzzy entropy (FRCMFE), which aims to relieve the large fluctuation of fuzzy entropy (FuzzyEn) measure and significantly discriminate different short-term financial time series with noise, is proposed to quantify the complexity dynamics of the international stock indices in the paper. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 183
    “…The proposed online monitoring process is designed to detect a significant change in volatility of financial time series. The tuning parameters are optimally chosen using particle swarm optimization (PSO). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 184
    “…This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. …”
    Enlace del recurso
    Enlace del recurso
  5. 185
    “…In this paper, a heavy-tailed distribution approach is considered in order to explore the behavior of actual financial time series. We show that this kind of distribution allows to properly fit the empirical distribution of the stocks from S&P500 index. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 186
    por Shao, Xigao, Wu, Kun, Liao, Bifeng
    Publicado 2012
    “…Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ (1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 187
    “…The application topics span from food webs, to the Internet, the World Wide Web, and social networks, passing through the international trade web and financial time series. The final part is devoted to definition and implementation of the most important network models. …”
    Enlace del recurso
    Enlace del recurso
  8. 188
    “…To test the performance of the ETPDM, we implement numerical experiments for financial time-series and confirm the robustness for a small number of particles by comparing with the conventional particle filtering.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 189
    “…We apply this method to the study of financial time series, showing that stocks and indices present a rich irreversibility dynamics. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 190
    por Machado, José A. Tenreiro
    Publicado 2020
    “…Financial time series have a fractal nature that poses challenges for their dynamical characterization. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 191
    “…However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 192
    “…In this paper, we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series. Furthermore, we provide an algorithm to handle parameter estimations that uses the “maximization–minimization” approach. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 193
    “…The topics include: actuarial models; analysis of high frequency financial data; behavioural finance; carbon and green finance; credit risk methods and models; dynamic optimization in finance; financial econometrics; forecasting of dynamical actuarial and financial phenomena; fund performance evaluation; insurance portfolio risk analysis; interest rate models; longevity risk; machine learning and soft-computing in finance; management in insurance business; models and methods for financial time series analysis, models for financial derivatives; multivariate techniques for financial markets analysis; optimization in insurance; pricing; probability in actuarial sciences, insurance and finance; real world finance; risk management; solvency analysis; sovereign risk; static and dynamic portfolio selection and management; trading systems. …”
    Enlace del recurso
    Enlace del recurso
  14. 194
    por Spiro, Andrew Charles
    Publicado 2023
    “…By faithfully reproducing the original experiments, we seek to establish the reliability and applicability of PQCs for financial time series predictions. Building upon these results, we further investigate the impact of hyperparameters and explore novel circuit architectures to optimize the performance of quantum machine learning in time series forecasting.…”
    Enlace del recurso
  15. 195
    por De Clerk, Luke, Savel'ev, Sergey
    Publicado 2022
    “…Here, we analyse the behaviour of the higher order standardised moments of financial time series when we truncate a large data set into smaller and smaller subsets, referred to below as time windows. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 196
    “…We developed a simple method for estimating volatility and price staleness in empirical data in order to filter out such regularity patterns from return time series. The resulting financial time series of stock returns are then clustered into different groups according to some entropy measures. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 197
    “…The main objective is to design an intelligent tool to forecast the directional movement of stock market prices based on financial time series and news headlines as inputs. The binary predicted output obtained using the proposed model would aid investors in making better decisions. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 198
    “…In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 199
    por Loonat, Fayyaaz, Gebbie, Tim
    Publicado 2018
    “…We argue that the strategies are on the boundary of profitability when considered in the context of their application to intraday quantitative trading but demonstrate that patterns in financial time-series on the JSE could be systematically exploited in collective and that they are persistent in the data investigated. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 200
    por Qiu, Jiayu, Wang, Bin, Zhou, Changjun
    Publicado 2020
    “…In addition, LSTM avoids long-term dependence issues due to its unique storage unit structure, and it helps predict financial time series. Based on LSTM and an attention mechanism, a wavelet transform is used to denoise historical stock data, extract and train its features, and establish the prediction model of a stock price. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS