Mostrando 59,481 - 59,500 Resultados de 59,720 Para Buscar '"architecture"', tiempo de consulta: 0.53s Limitar resultados
  1. 59481
    “…Automated analyses were implemented using UNet-based FCN architectures and data augmentation techniques. Cross-validation was performed on hold-out data using standard similarity and error measures. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 59482
  3. 59483
    “…The implemented deep learning approach to identify the early stages of embryo development resulted in an overall accuracy of over 92% using the selected architectures of convolutional neural networks. The most problematic stage was the 3-cell stage, presumably due to its short duration during development. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 59484
    “…Changes in health architectures and financing pose different considerations for investments in evidence-informed policy than in the past. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 59485
  6. 59486
    “…Furthermore, the model performs better than other state-of-the-art deep learning architectures mostly used to analyze biological sequences. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 59487
    “…Only a careful analysis of the architectural and cytological characteristics of goiter or hyperplastic nodules will allow to recognize this rare variety of carcinoma.…”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 59488
  9. 59489
  10. 59490
    “…Fourteen different PRSs spanning different disease architectures and PRS generation approaches were evaluated. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 59491
    “…RESULTS: To explore the potentials of predicting real-value inter-residue distances, we develop a multi-task deep learning distance predictor (DeepDist) based on new residual convolutional network architectures to simultaneously predict real-value inter-residue distances and classify them into multiple distance intervals. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 59492
    “…The most common CT pattern was combined ground-glass opacity and reticular pattern (46/74, 62 %) along with architectural distortion (68/74, 92 %) and bronchial dilatation (66/74, 89 %). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 59493
    “…Due to the high number of FBA simulations that are necessary to assess sensitivity coefficients on genome-wide models, our method exploits a master-slave methodology that distributes the computation on massively multi-core architectures. We performed the following steps: (1) we determined the putative parameterizations of the genome-wide metabolic constraint-based model, using Saltelli’s method; (2) we applied FBA to each parameterized model, distributing the massive amount of calculations over multiple nodes by means of MPI; (3) we then recollected and exploited the results of all FBA runs to assess a global sensitivity analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 59494
    “…We extensively study multiple design choices and their effects on the outcome, including architectures and augmentations. We propose a negative data sampling strategy, which drastically reduces the false positive rate (25% of false positives versus 62.5%) and improves each metric pertinent to our problem, with a 53% reduction in the error of tumor extent. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 59495
    “…RESULTS: We present TraitSimulation, an open-source Julia package that makes it trivial to quickly simulate phenotypes under a variety of genetic architectures. This package is integrated into our OpenMendel suite for easy downstream analyses. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 59496
    “…By developing a modified version of gaining–sharing knowledge (GSK) optimization algorithm using the Opposition-based learning (OBL) and Cauchy mutation operators, the architectures of the deployed deep CNNs are optimized automatically without performing the general trial and error procedures. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 59497
    “…Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 59498
    “…IHC, unlike bulk methods (RT-PCR, NGS and FC), is able provide information regarding cellular/architectural context of disease in biopsies. FC did not identify any NPM1-mutated residual disease not already detected by RT-PCR, NGS or IHC. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 59499
    “…Pretrained multilingual text encoders based on neural transformer architectures, such as multilingual BERT (mBERT) and XLM, have recently become a default paradigm for cross-lingual transfer of natural language processing models, rendering cross-lingual word embedding spaces (CLWEs) effectively obsolete. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 59500
    “…Almost half of them (48%) had significant pulmonary abnormalities, including ground-glass opacities, parenchymal bands, reticulation, traction bronchiectasis and architectural distortion. The machine learning model, including the results of 257 patients with complete data on mMRC, SpO(2), FVC, CXR and CT, accurately detected pulmonary lesions by the joint data of CXR, mMRC scale, SpO(2) and FVC (sensitivity, 0.85±0.08; specificity, 0.70±0.06; F1-score, 0.79±0.06 and area under the curve, 0.80±0.07). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS