Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Discriminación
8
Análisis multivariante
5
Conducta animal
4
Aspectos políticos
3
Discrimination
3
Evolución
3
Aprendizaje automático (Inteligencia artificial)
2
Cognición en animales
2
Condiciones sociales
2
Conductismo (Psicología)
2
Derecho
2
Discriminación sexual contra la mujer
2
Ecología animal
2
Minería de datos
2
Negocios
2
Neurociencias
2
Pobreza
2
Política social
2
Problemas raciales
2
Race relations
2
clasificación
2
AND ANALYSIS OF RESEARCH
1
Academic performance
1
African Americans
1
Algoritmos
1
An index for large areas called Area at Risk of Fire (SeR) was developed
1
Análisis del discurso
1
Análisis discriminante
1
Aprendizaje en animales
1
Aroma
1
-
73981por Ye, Mengyao, Sun, Jianqin, Chen, Yanqiu, Ren, Qian, Li, Zhen, Zhao, Yanfang, Pan, Yiru, Xue, Huijun“…However, results from linear discriminant analysis effect size in the oatmeal group indicated a significant positive response of Firmicutes phylum following oatmeal consumption. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73982por Pan, Jing, Ma, Chunli, Huang, Zhumei, Ye, Yulong, Zeng, Hongxia, Deng, Shuangsheng, Hu, Junjie, Tao, Jianping“…Based on molecular analysis, S. wenzeli might be responsible for the neurological disease in chickens, and ITS1 and rpoB are more suitable for discriminating it from closely related Sarcocystis spp. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73983por Schaumberg, Andrew J., Juarez-Nicanor, Wendy C., Choudhury, Sarah J., Pastrián, Laura G., Pritt, Bobbi S., Prieto Pozuelo, Mario, Sotillo Sánchez, Ricardo, Ho, Khanh, Zahra, Nusrat, Sener, Betul Duygu, Yip, Stephen, Xu, Bin, Annavarapu, Srinivas Rao, Morini, Aurélien, Jones, Karra A., Rosado-Orozco, Kathia, Mukhopadhyay, Sanjay, Miguel, Carlos, Yang, Hongyu, Rosen, Yale, Ali, Rola H., Folaranmi, Olaleke O., Gardner, Jerad M., Rusu, Corina, Stayerman, Celina, Gross, John, Suleiman, Dauda E., Sirintrapun, S. Joseph, Aly, Mariam, Fuchs, Thomas J.“…We develop machine learning and deep learning models to (i) accurately identify histopathology stains, (ii) discriminate between tissues, and (iii) differentiate disease states. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73984por Ruszkiewicz, Dorota M, Sanders, Daniel, O'Brien, Rachel, Hempel, Frederik, Reed, Matthew J, Riepe, Ansgar C, Bailie, Kenneth, Brodrick, Emma, Darnley, Kareen, Ellerkmann, Richard, Mueller, Oliver, Skarysz, Angelika, Truss, Michael, Wortelmann, Thomas, Yordanov, Simeon, Thomas, C.L.Paul, Schaaf, Bernhard, Eddleston, Michael“…Multivariate analysis identified aldehydes (ethanal, octanal), ketones (acetone, butanone), and methanol that discriminated COVID-19 from other conditions. An unidentified-feature with significant predictive power for severity/death was isolated in Edinburgh, while heptanal was identified in Dortmund. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73985por Bernatz, Simon, Ackermann, Jörg, Mandel, Philipp, Kaltenbach, Benjamin, Zhdanovich, Yauheniya, Harter, Patrick N., Döring, Claudia, Hammerstingl, Renate, Bodelle, Boris, Smith, Kevin, Bucher, Andreas, Albrecht, Moritz, Rosbach, Nicolas, Basten, Lajos, Yel, Ibrahim, Wenzel, Mike, Bankov, Katrin, Koch, Ina, Chun, Felix K.-H., Köllermann, Jens, Wild, Peter J., Vogl, Thomas J.“…RESULTS: PC analysis discriminated between benign and malignant prostate tissue. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73986por Gál, Zsófia, Gézsi, András, Semsei, Ágnes F., Nagy, Adrienne, Sultész, Monika, Csoma, Zsuzsanna, Tamási, Lilla, Gálffy, Gabriella, Szalai, Csaba“…Altogether, OIP5-AS1 had the highest discriminative power in case of three out of six comparisons. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73987por Singleton, Ellen H., Pijnenburg, Yolande A. L., Sudre, Carole H., Groot, Colin, Kochova, Elena, Barkhof, Frederik, La Joie, Renaud, Rosen, Howard J., Seeley, William W., Miller, Bruce, Cardoso, M. Jorge, Papma, Janne, Scheltens, Philip, Rabinovici, Gil D., Ossenkoppele, Rik“…Analyses of WMH and subcortical volume showed closer resemblance of bvAD to tAD than to bvFTD, and larger amygdalar volumes in bvAD than tAD respectively. The top-3 discriminators for bvAD vs. bvFTD were FDG posterior-DMN-ratios (bvAD<bvFTD), MRI posterior-DMN-ratios (bvAD<bvFTD), MRI salience-network-ratios (bvAD>bvFTD, area under the curve [AUC] range 0.85–0.91, all p < 0.001). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73988por Wu, Zhanxuan E., Fraser, Karl, Kruger, Marlena C., Sequeira, Ivana R., Yip, Wilson, Lu, Louise W., Plank, Lindsay D., Murphy, Rinki, Cooper, Garth J. S., Martin, Jean-Charles, Poppitt, Sally D.“…Metabolic risk groups in each ethnicity were stratified based on the joint metabolomic signature for FPG and %VAT(TBF) and clinically characterised using partial least squares-discriminant analysis (PLS-DA) and t-tests. RESULTS: FPG was correlated with 40 and 110 metabolites in Caucasians and Chinese respectively, with diglyceride DG(38:5) (adjusted β = 0.29, p = 3.00E−05) in Caucasians and triglyceride TG(54:4) (adjusted β = 0.28, p = 2.02E−07) in Chinese being the most significantly correlated metabolite based on the p-value. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73989por Li, Pei-Jing, Li, Kai-Xin, Jin, Ting, Lin, Hua-Ming, Fang, Jia-Ben, Yang, Shuang-Yan, Shen, Wei, Chen, Jia, Zhang, Jiang, Chen, Xiao-Zhong, Chen, Ming, Chen, Yuan-Yuan“…These models might help to discriminate high risk population in clinical practice that susceptible to severe oral mucositis and individualize treatment plan to prevent it.…”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73990por Pei, Yuqing, Lou, Xiaoying, Li, Kexin, Xu, Xiaotian, Guo, Ye, Xu, Danfei, Yang, Zhenxi, Xu, Dongsheng, Cui, Wei, Zhang, Donghong“…ROC curve analysis revealed that leukocyte m6A could significantly discriminate patients with lung adenocarcinoma (LUAD) (AUC=0.736, P<0.001) and lung squamous cell carcinoma (LUSC) (AUC=0.963, P<0.001) from healthy individuals. m6A displayed superior sensitivity (100%) and specificity (85.7%) for LUSC than squamous cell carcinoma (SCC) antigen and cytokeratin fragment 211 (Cyfra211). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73991por van Kranendonk, Katinka R., Treurniet, Kilian M., Boers, Anna M. M., Berkhemer, Olvert A., Coutinho, Jonathan M., Lingsma, Hester F., van Zwam, Wim H., van der Lugt, Aad, van Oostenbrugge, Robert J., Dippel, Diederik W. J., Roos, Yvo B. W. E. M., Marquering, Henk A., Majoie, Charles B. L. M.“…Usually, HT is classified by its radiological appearance. Discriminating between the subtypes can be complicated, and interobserver variation is considerable. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73992Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer diseasepor Dincer, Aylin, Gordon, Brian A., Hari-Raj, Amrita, Keefe, Sarah J., Flores, Shaney, McKay, Nicole S., Paulick, Angela M., Shady Lewis, Kristine E., Feldman, Rebecca L., Hornbeck, Russ C., Allegri, Ricardo, Ances, Beau M., Berman, Sarah B., Brickman, Adam M., Brooks, William S., Cash, David M., Chhatwal, Jasmeer P., Farlow, Martin R., la Fougère, Christian, Fox, Nick C., Fulham, Michael J., Jack, Clifford R., Joseph-Mathurin, Nelly, Karch, Celeste M., Lee, Athene, Levin, Johannes, Masters, Colin L., McDade, Eric M., Oh, Hwamee, Perrin, Richard J., Raji, Cyrus, Salloway, Stephen P., Schofield, Peter R., Su, Yi, Villemagne, Victor L., Wang, Qing, Weiner, Michael W., Xiong, Chengjie, Yakushev, Igor, Morris, John C., Bateman, Randall J., L.S. Benzinger, Tammie“…The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73993por Johnson, Heather, Guo, Jinan, Zhang, Xuhui, Zhang, Heqiu, Simoulis, Athanasios, Wu, Alan H. B., Xia, Taolin, Li, Fei, Tan, Wanlong, Johnson, Allan, Dizeyi, Nishtman, Abrahamsson, Per-Anders, Kenner, Lukas, Feng, Xiaoyan, Zou, Chang, Xiao, Kefeng, Persson, Jenny L., Chen, Lingwu“…The diagnostic performance of the test was assessed against the pathological diagnosis from biopsy by discriminant analysis. Uni- and multivariate logistic regression analysis was performed to assess its diagnostic improvement over PSA and risk factors. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73994por Lamichhane, Bishal, Kim, Yejin, Segarra, Santiago, Zhang, Guoqiang, Lhatoo, Samden, Hampson, Jaison, Jiang, Xiaoqian“…Of among the channels included in our analysis, the central EEG channels were found to provide the best discriminative representation for the detection of the end of PGES. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73995por Ferreira, João, Gonçalves, Valdirene, Marques-Alves, Patrícia, Martins, Rui, Monteiro, Sílvia, Teixeira, Rogério, Gonçalves, Lino“…Left atrial emptying fraction (LAEF) was the best LA functional parameter and the best overall parameter in discriminating primary outcome (AUC 0.845, 95%CI 0.81–0.88, P < 0.001). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73996“…Of the original grouped cases, 89.6% were correctly classified after discriminate analysis. Logistic regression analysis showed that participants with a high risk of misjudging health information had a lower education level, lower income, and poorer health. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73997por Yang, Dae-Myoung, Li, Fiona, Bauman, Glenn, Chin, Joseph, Pautler, Stephen, Moussa, Madeleine, Rachinsky, Irina, Valliant, John, Lee, Ting-Yim“…RESULTS: For [(18)F]DCFPyL, logistic regression identified K(i) and k(4) as the optimal model to discriminate tumour from benign tissue (84.2% sensitivity and 94.7% specificity), while only SUV was predictive for [(18)F]FCH (82.6% sensitivity and 87.0% specificity). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73998por Song, Ming, Yuan, Fang, Li, Xiaohong, Ma, Xipeng, Yin, Xinmin, Rouchka, Eric C., Zhang, Xiang, Deng, Zhongbin, Prough, Russell A., McClain, Craig J.“…Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
73999por Del Moral-Hernández, Oscar, Hernández-Sotelo, Daniel, Alarcón-Romero, Luz del Carmen, Mendoza-Catalán, Miguel Angel, Flores-Alfaro, Eugenia, Castro-Coronel, Yaneth, Ortiz-Ortiz, Julio, Leyva-Vázquez, Marco Antonio, Ortuño-Pineda, Carlos, Castro-Mora, Wendy, Illades-Aguiar, Berenice“…TOP2A/MCM2 was the best biomarker for discriminating between LSIL and HSIL, followed by p16(INK4a) and cyclinE1. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
74000por Short, Meghan I., Hudson, Robert, Besasie, Benjamin D., Reveles, Kelly R., Shah, Dimpy P., Nicholson, Susannah, Johnson-Pais, Teresa L., Weldon, Korri, Lai, Zhao, Leach, Robin J., Fongang, Bernard, Liss, Michael A.“…Additionally, no taxa differed among the methods in a Linear Discriminant Analysis Effect Size (LEfSe) analysis comparing all-against-all sampling methods. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto