-
1741“…Examples include high temperature superconductivity, heavy Fermion superconductivity and the interiors of neutron stars. …”
Enlace del recurso
-
1742por Lee, D M“…Examples include high temperature superconductivity, heavy Fermion superconductivity and the interiors of neutron stars. …”
Publicado 1997
Enlace del recurso
-
1743por Spagnoletti, P, Simpson, G, Kisyov, S, Bucurescu, D, Régis, J M, Saed-Samii, N, Blanc, A, Jentschel, M, Köster, U, Mutti, P, Soldner, T, de France, G, Ur, C A, Urban, W, Bruce, A M, Bernards, C, Drouet, F, Fraile, L M, Gaffney, L P, Ghită, D G, Ilieva, S, Jolie, J, Korten, W, Kröll, T, Lalkovski, S, Larijarni, C, Lică, R, Mach, H, Mărginean, N, Paziy, V, Podolyák, Zs, Regan, P H, Scheck, M, Smith, J F, Thiamova, G, Townsley, C, Vancraeyenest, A, Vedia, V, Warr, N, Werner, V, Zielińska, M“…Some of the excited states known in $^{99}Zr$ have been reasonably described with interacting boson-fermion model (IBFM) calculations. Type-II shell evolution is proposed to play a major role in modifying single-particle energies in $^{99}Zr$.…”
Publicado 2019
Enlace del recurso
Enlace del recurso
-
1744por Lima, Leonardo S.“…For all models analyzed: Ising model as well as noninteracting fermion models, we obtain a little influence of the non-Hermitian parameters on conductivity and thus, a small effect over transport coefficients. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1745“…Differing from the Dirac fermion Hamiltonian, the hexagonal warping term leads to the opening up of a band gap by an in-plane magnetization. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1746“…Skutterudites, a class of materials with cage-like crystal structure which have received considerable research interest in recent years, are the breeding ground of several unusual phenomena such as heavy fermion superconductivity, exciton-mediated superconducting state and Weyl fermions. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1747“…The application of the generalised NWA is demonstrated both at tree level and at one-loop order for an example process where the neutral Higgs bosons h and H of the MSSM are produced in the decay of a heavy neutralino and subsequently decay into a fermion pair. The generalised NWA, based on on-shell matrix elements or their approximations leading to simple weight factors, is shown to produce UV- and IR-finite results which are numerically close to the result of the full process at tree level and at one-loop order, where an agreement of better than [Formula: see text] is found for the considered process. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1748“…Dirac semimetals host three-dimensional (3D) Dirac fermion states in the bulk of crystalline solids, which can be viewed as 3D analogs of graphene. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1749“…Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1750por Vondráček, M., Kalita, D., Kučera, M., Fekete, L., Kopeček, J., Lančok, J., Coraux, J., Bouchiat, V., Honolka, J.“…At the conceptual pivot point is the particular two-dimensional massless Dirac fermion character of graphene charge carriers and its volitional modification by intrinsic or extrinsic means. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1751por Du, Yi, Zhuang, Jincheng, Wang, Jiaou, Li, Zhi, Liu, Hongsheng, Zhao, Jijun, Xu, Xun, Feng, Haifeng, Chen, Lan, Wu, Kehui, Wang, Xiaolin, Dou, Shi Xue“…Silicene is a monolayer allotrope of silicon atoms arranged in a honeycomb structure with massless Dirac fermion characteristics similar to graphene. It merits development of silicon-based multifunctional nanoelectronic and spintronic devices operated at room temperature because of strong spin-orbit coupling. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1752“…The compound crystallizes in an antiperovskite tetragonal structure similar to that in the canonical family of platinum-based superconductors APt(3)P (A = Sr, Ca, La) and closely related to the noncentrosymmetric heavy fermion superconductor CePt(3)Si. In contrast to all the superconducting counterparts, however, no superconductivity is observed in CePt(3)P down to 0.5 K. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1753por De Romeri, Valentina, Kim, Jong Soo, Martín-Lozano, Víctor, Rolbiecki, Krzysztof, de Austri, Roberto Ruiz“…Moreover, we include a dark matter candidate in the form of a Majorana fermion which interacts through the 750 GeV portal. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1754“…We investigate the magnetic and the transport properties of diluted magnetic semiconductors using a spin-fermion Monte-Carlo method on a simple cubic lattice in the intermediate coupling regime. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1755por Pang, Guiming, Smidman, Michael, Zhang, Jinglei, Jiao, Lin, Weng, Zongfa, Nica, Emilian M., Chen, Ye, Jiang, Wenbing, Zhang, Yongjun, Xie, Wu, Jeevan, Hirale S., Lee, Hanoh, Gegenwart, Philipp, Steglich, Frank, Si, Qimiao, Yuan, Huiqiu“…The nature of the pairing symmetry of the first heavy fermion superconductor CeCu(2)Si(2) has recently become the subject of controversy. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1756“…We apply this tool to a paradigmatic class of lattice fermion systems with local reservoirs, characterised by Gaussian non-equilibrium steady states. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1757por Jang, Sooyoung, Kealhofer, Robert, John, Caolan, Doyle, Spencer, Hong, Ji-Sook, Shim, Ji Hoon, Si, Q., Erten, O., Denlinger, Jonathan D., Analytis, James. G.“…Our understanding of correlated electron systems is vexed by the complexity of their interactions. Heavy fermion compounds are archetypal examples of this physics, leading to exotic properties that weave magnetism, superconductivity and strange metal behavior together. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
1758por Ackerstaff, K., Alexander, G., Allison, John, Altekamp, N., Anderson, K.J., Anderson, S., Arcelli, S., Asai, S., Ashby, S.F., Axen, D., Azuelos, G., Ball, A.H., Barberio, E., Barlow, Roger J., Bartoldus, R., Batley, J.R., Baumann, S., Bechtluft, J., Behnke, T., Bell, Kenneth Watson, Bella, G., Bentvelsen, S., Bethke, S., Betts, S., Biebel, O., Biguzzi, A., Bird, S.D., Blobel, V., Bloodworth, I.J., Bobinski, M., Bock, P., Bohme, J., Boutemeur, M., Braibant, S., Bright-Thomas, P., Brown, Robert M., Burckhart, H.J., Burgard, C., Burgin, R., Capiluppi, P., Carnegie, R.K., Carter, A.A., Carter, J.R., Chang, C.Y., Charlton, David G., Chrisman, D., Ciocca, C., Clarke, P.E.L., Clay, E., Cohen, I., Conboy, J.E., Cooke, O.C., Couyoumtzelis, C., Coxe, R.L., Cuffiani, M., Dado, S., Dallavalle, G.Marco, Davis, R., De Jong, S., del Pozo, L.A., De Roeck, A., Desch, K., Dienes, B., Dixit, M.S., Doucet, M., Dubbert, J., Duchovni, E., Duckeck, G., Duerdoth, I.P., Eatough, D., Estabrooks, P.G., Etzion, E., Evans, H.G., Fabbri, F., Fanfani, A., Fanti, M., Faust, A.A., Fiedler, F., Fierro, M., Fischer, H.M., Fleck, I., Folman, R., Furtjes, A., Futyan, D.I., Gagnon, P., Gary, J.W., Gascon, J., Gascon-Shotkin, S.M., Geich-Gimbel, C., Geralis, T., Giacomelli, G., Giacomelli, P., Gibson, V., Gibson, W.R., Gingrich, D.M., Glenzinski, D., Goldberg, J., Gorn, W., Grandi, C., Gross, E., Grunhaus, J., Gruwe, M., Hanson, G.G., Hansroul, M., Hapke, M., Hargrove, C.K., Hartmann, C., Hauschild, M., Hawkes, C.M., Hawkings, R., Hemingway, R.J., Herndon, M., Herten, G., Heuer, R.D., Hildreth, M.D., Hill, J.C., Hillier, S.J., Hobson, P.R., Hocker, James Andrew, Homer, R.J., Honma, A.K., Horvath, D., Hossain, K.R., Howard, R., Huntemeyer, P., Igo-Kemenes, P., Imrie, D.C., Ishii, K., Jacob, F.R., Jawahery, A., Jeremie, H., Jimack, M., Joly, A., Jones, C.R., Jovanovic, P., Junk, T.R., Karlen, D., Kartvelishvili, V., Kawagoe, K., Kawamoto, T., Kayal, P.I., Keeler, R.K., Kellogg, R.G., Kennedy, B.W., Klier, A., Kluth, S., Kobayashi, T., Kobel, M., Koetke, D.S., Kokott, T.P., Kolrep, M., Komamiya, S., Kowalewski, Robert V., Kress, T., Krieger, P., von Krogh, J., Kyberd, P., Lafferty, G.D., Lanske, D., Lauber, J., Lautenschlager, S.R., Lawson, I., Layter, J.G., Lazic, D., Lee, A.M., Lefebvre, E., Lellouch, D., Letts, J., Levinson, L., Liebisch, R., List, B., Littlewood, C., Lloyd, A.W., Lloyd, S.L., Loebinger, F.K., Long, G.D., Losty, M.J., Ludwig, J., Lui, D., Macchiolo, A., Macpherson, A., Mannelli, M., Marcellini, S., Markopoulos, C., Martin, A.J., Martin, J.P., Martinez, G., Mashimo, T., Mattig, Peter, McDonald, W.John, McKenna, J., Mckigney, E.A., McMahon, T.J., McPherson, R.A., Meijers, F., Menke, S., Merritt, F.S., Mes, H., Meyer, J., Michelini, A., Mihara, S., Mikenberg, G., Miller, D.J., Mir, R., Mohr, W., Montanari, A., Mori, T., Nagai, K., Nakamura, I., Neal, H.A., Nellen, B., Nisius, R., O'Neale, S.W., Oakham, F.G., Odorici, F., Ogren, H.O., Oreglia, M.J., Orito, S., Palinkas, J., Pasztor, G., Pater, J.R., Patrick, G.N., Patt, J., Perez-Ochoa, R., Petzold, S., Pfeifenschneider, P., Pilcher, J.E., Pinfold, J., Plane, David E., Poffenberger, P., Poli, B., Polok, J., Przybycien, M., Rembser, C., Rick, H., Robertson, S., Robins, S.A., Rodning, N., Roney, J.M., Roscoe, K., Rossi, A.M., Rozen, Y., Runge, K., Runolfsson, O., Rust, D.R., Sachs, K., Saeki, T., Sahr, O., Sang, W.M., Sarkisian, E.K.G., Sbarra, C., Schaile, A.D., Schaile, O., Scharf, F., Scharff-Hansen, P., Schieck, J., Schmitt, B., Schmitt, S., Schoning, A., Schorner, T., Schroder, Matthias, Schumacher, M., Schwick, C., Scott, W.G., Seuster, R., Shears, T.G., Shen, B.C., Shepherd-Themistocleous, C.H., Sherwood, P., Siroli, G.P., Sittler, A., Skuja, A., Smith, A.M., Snow, G.A., Sobie, R., Soldner-Rembold, S., Sproston, M., Stahl, A., Stephens, K., Steuerer, J., Stoll, K., Strom, David M., Strohmer, R., Tafirout, R., Talbot, S.D., Tanaka, S., Taras, P., Tarem, S., Teuscher, R., Thiergen, M., Thomson, M.A., von Torne, E., Torrence, E., Towers, S., Trigger, I., Trocsanyi, Z., Tsur, E., Turcot, A.S., Turner-Watson, M.F., Van Kooten, Rick J., Vannerem, P., Verzocchi, M., Vikas, P., Voss, H., Wackerle, F., Wagner, A., Ward, C.P., Ward, D.R., Watkins, P.M., Watson, A.T., Watson, N.K., Wells, P.S., Wermes, N., White, J.S., Wilson, G.W., Wilson, J.A., Wyatt, T.R., Yamashita, S., Yekutieli, G., Zacek, V., Zer-Zion, D.“…Upper limits on the product of cross section and branching ratios, sigma(e+e- to XY) * BR(X to gamma gamma) * BR(Y to f fbar) as low as 70fb are obtained over the M(X) range 10 - 170 GeV for the case where 10 < M(Y) < 160 GeV and M(X)+M(Y) > 90 GeV, independent of the nature of Y provided it decays to a fermion pair and has negligible width. Higgs scalars which couple only to gauge bosons at Standard Model strength are ruled out up to a mass of 90.0 GeV at the 95% confidence level. …”
Publicado 1998
Enlace del recurso
Enlace del recurso
-
1759por CMS Collaboration“…Reinterpreted in the context of the standard model with four fermion families a Higgs boson with a mass in the range 138 -162 $\GeVcc$ and 178-502 $\GeVcc$ is excluded at 95\% CL.…”
Publicado 2011
Enlace del recurso
-
1760por CMS Collaboration“…Reinterpreted in the context of the standard model with four fermion families a Higgs boson with a mass in the range 120-520 $\GeVcc$ is excluded at 95\% CL.…”
Publicado 2011
Enlace del recurso