Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36241por Ribas, Talita Fernanda Augusto, Pieczarka, Julio Cesar, Griffin, Darren K., Kiazim, Lucas G., Nagamachi, Cleusa Yoshiko, O´Brien, Patricia Caroline Mary, Ferguson-Smith, Malcolm Andrew, Yang, Fengtang, Aleixo, Alexandre, O’Connor, Rebecca E.“…They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36242por Xing, Wenqun, Sun, Haibo, Yan, Chi, Zhao, Chengzhi, Wang, Dongqing, Li, Mingming, Ma, Jie“…Four machine-learning-based prediction models were established and compared, including the K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and logistic regression (LR) algorithms. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36243“…Several machine learning algorithms (random forest, XGBoost, naïve Bayes, and logistic regression) were used to assess the 3-year risk of developing cognitive impairment. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36244por Drake, Isabel, Hindy, George, Almgren, Peter, Engström, Gunnar, Nilsson, Jan, Melander, Olle, Orho-Melander, Marju“…To examine the reproducibility of protein-mortality associations we used a two-step random-split approach to simulate a discovery and replication cohort and conducted analyses using four different methods: Cox regression, stepwise Cox regression, Lasso-Cox regression, and random survival forest (RSF). In the total study population, we identified eight proteins that associated with all-cause mortality after adjustment for established risk factors and with Bonferroni correction for multiple testing. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36245por Wirsiy, Frankline Sevidzem, Boock, Alphonse Um, Akoachere, Jane-Francis Tatah Kihla“…It was based on this that we investigated the Baka community of Abong-Mbang Health District in tropical rain forest of Cameroon. METHODS: A cross-sectional study was conducted with participants randomly selected from 13 villages in Abong-Mbang by multi-stage cluster sampling. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36246“…Meanwhile, we used traditional regression analysis (univariate Cox analysis, random survival forest analysis, and lasso regression analysis) to screen the cancer-related lncRNAs. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36247“…The heterogeneity of studies was assessed using the Cochrane Q test statistic, I(2) test statistic, and, visually, using Forest and Galbraith’s plots. A random-effect model was applied to get the pooled birth prevalence of neural tube defects. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36248por He, Qing-Ying, Yu, Xin-Yu, Xiao, Zheng, Sun, Xin, Zhu, Wei-Feng, Yi, Xing-Qian, Chen, Qian, Zhang, Jia-Hui, Chen, Shu-Xian, Zhou, Xu, Nie, He-Yun, Shang, Hong-Cai, Chen, Xiao-Fan“…A meta-analysis was performed, and forest plots were drawn. Results: We included 23 studies which all revealed that patients in DHI groups had better efficacy than control groups. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36249“…We also constructed a risk prediction model using the random survival forest method to analyze right-censored survival data based on key metabolic genes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36250por Davoudi, Anis, Mardini, Mamoun T, Nelson, David, Albinali, Fahd, Ranka, Sanjay, Rashidi, Parisa, Manini, Todd M“…Accelerometer data from each body position and combinations of positions were used to develop random forest models to assess activity category recognition accuracy and MET estimation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36251por Ji, Meng, Liu, Yanmeng, Zhao, Mengdan, Lyu, Ziqing, Zhang, Boren, Luo, Xin, Li, Yanlin, Zhong, Yin“…We compared extreme gradient boosting, random forest, neural networks, and C5.0 decision tree for automated health information understandability evaluation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36252por Peres, Luciano Brinck, Calil, Bruno Coelho, da Silva, Ana Paula Sousa Paixão Barroso, Dionísio, Valdeci Carlos, Vieira, Marcus Fraga, de Oliveira Andrade, Adriano, Pereira, Adriano Alves“…For group classification, 4 classifiers were used and compared, those being [Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes (NB)]. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36253“…To identify additional IME-related genomic features, Random Forest models were trained for the classification of gene expression level based on an array of sequence-related features. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36254por Senczuk, Gabriele, Mastrangelo, Salvatore, Ajmone-Marsan, Paolo, Becskei, Zsolt, Colangelo, Paolo, Colli, Licia, Ferretti, Luca, Karsli, Taki, Lancioni, Hovirag, Lasagna, Emiliano, Marletta, Donata, Persichilli, Christian, Portolano, Baldassare, Sarti, Francesca M., Ciani, Elena, Pilla, Fabio“…Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36255por Marotz, Clarisse, Belda-Ferre, Pedro, Ali, Farhana, Das, Promi, Huang, Shi, Cantrell, Kalen, Jiang, Lingjing, Martino, Cameron, Diner, Rachel E., Rahman, Gibraan, McDonald, Daniel, Armstrong, George, Kodera, Sho, Donato, Sonya, Ecklu-Mensah, Gertrude, Gottel, Neil, Salas Garcia, Mariana C., Chiang, Leslie Y., Salido, Rodolfo A., Shaffer, Justin P., Bryant, Mac Kenzie, Sanders, Karenina, Humphrey, Greg, Ackermann, Gail, Haiminen, Niina, Beck, Kristen L., Kim, Ho-Cheol, Carrieri, Anna Paola, Parida, Laxmi, Vázquez-Baeza, Yoshiki, Torriani, Francesca J., Knight, Rob, Gilbert, Jack, Sweeney, Daniel A., Allard, Sarah M.“…We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. RESULTS: Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36256por Amritphale, Amod, Chatterjee, Ranojoy, Chatterjee, Suvo, Amritphale, Nupur, Rahnavard, Ali, Awan, G. Mustafa, Omar, Bassam, Fonarow, Gregg C.“…Logistic regression, support vector machine (SVM), deep neural network (DNN), random forest, and decision tree models were evaluated to generate a robust prediction model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36257por Fang, Hao Sen Andrew, Tan, Ngiap Chuan, Tan, Wei Ying, Oei, Ronald Wihal, Lee, Mong Li, Hsu, Wynne“…The results were compared using logistic regression, random forest (RF) and support vector machine (SVM) models from the same dataset. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36258por Messad, Farouk, Louveau, Isabelle, Renaudeau, David, Gilbert, Hélène, Gondret, Florence“…Merging the three datasets allowed considering FCR values (Mean = 2.85; Min = 1.92; Max = 5.00) for a total of n = 148 pigs, with a large range of body weight (15 to 115 kg) and different test period duration (2 to 9 weeks). Random forest (RF) and gradient tree boosting (GTB) were applied on the whole blood transcripts (26,687 annotated molecular probes) to identify the most important variables for binary classification on RFI groups and a quantitative prediction of FCR, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36259“…Among the machine learning methods, generalized boosting machines using the Poisson distribution as well as random forests regression were the best performing. No model was able to capture the bucket shaped hometime distribution and future research on factors which are associated with extreme values of hometime that are not available in administrative data is warranted. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36260por Chotirat, Sadudee, Nekkab, Narimane, Kumpitak, Chalermpon, Hietanen, Jenni, White, Michael T., Kiattibutr, Kirakorn, Sa-angchai, Patiwat, Brewster, Jessica, Schoffer, Kael, Takashima, Eizo, Tsuboi, Takafumi, Harbers, Matthias, Chitnis, Chetan E., Healer, Julie, Tham, Wai-Hong, Nguitragool, Wang, Mueller, Ivo, Sattabongkot, Jetsumon, Longley, Rhea J.“…Higher IgG levels were associated with older age (>18 years, p < 0.05) and males (17/23 proteins, p < 0.05), supporting the paradigm that men have a higher risk of infection than females in this setting. We used a Random Forests algorithm to predict which individuals had exposure to P. vivax parasites in the last 9-months, based on their IgG antibody levels to a panel of eight previously validated P. vivax proteins. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto