Mostrando 36,261 - 36,280 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.48s Limitar resultados
  1. 36261
  2. 36262
    “…A two-level logistic model was employed to investigate the association strengths reflected by adjusted odds ratios (AOR) and 95% confidence intervals in forest plots. RESULTS: On average, 17.58% of the respondents with HBP and 14.87% with DM had experienced health services underutilization during 1 month before the survey. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36263
    “…Predicting performance of five classifiers including logistic regression, support vector machine, random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36264
    por Sitko, Jiljí, Heneberg, Petr
    Publicado 2021
    “…In Central Europe, conspicuous changes are evident in populations of common farmland birds, in strong contrast to forest birds in the same region. However, there is a lack of information on longitudinal changes in trematodes that are associated with common farmland birds, despite the fact that diversity of trematodes is directly linked to the preservation of long-established food webs and habitat use adaptations of their hosts. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36265
    “…Assessment models were constructed using logistic regression, ridge regression, support vector machine and random forest. The area under the receiver operator characteristic curve (AUROC) was used to evaluate the performance of different models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36266
    “…Toward this end, information regarding 190 pharmacovariants was leveraged, alongside with 4 machine learning algorithms, namely AdaBoost, XGBoost, multinomial logistic regression, and random forest, of which the performance was assessed through 5-fold cross validation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36267
    por Liu, Siru, Li, Jili, Liu, Jialin
    Publicado 2021
    “…The F1 values of transfer learning models were 0.792 (95% CI 0.789-0.795), 0.578 (95% CI 0.572-0.584), and 0.614 (95% CI 0.606-0.622) for these three tasks, which significantly outperformed the machine learning models (logistic regression, random forest, and support vector machine). The prevalence of tweets containing attitudes and behavioral intentions varied significantly over time. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36268
    “…A random-effects model was used to estimate the pooled estimate with a 95% confidence interval (CI). Forest plots were used to visualize the presence of heterogeneity and estimate the pooled burden and determinants of chronic kidney disease among diabetic patients. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36269
    “…Our best performing model, a random forest trained by the WGS dataset, identified a species (Bacteroides coprocola) that predominantly contributes to the abundance of leuB, a gene involved in branched chain amino acid biosynthesis; a risk factor for glucose intolerance, insulin resistance, and type 2 diabetes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36270
  11. 36271
    “…When predicting death in patients hospitalized with COVID-19, AdaBoost, random forest, gradient boosting machine, and decision tree yielded similar or lower internal and external validation discrimination performance compared to L1-regularized logistic regression, whereas the MLP neural network consistently resulted in lower discrimination. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 36272
    “…Based on PIINPB, 6 machine learning classifiers including random forest, support vector machine, extreme gradient boosting, naive Bayes, neural network, and logistic regression were used to derive diagnostic models, while least absolute shrinkage and selection operator (LASSO) analyses were employed to construct prognostic signatures. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36273
    “…This study includes demographic data, BMI, blood tests, and questionnaires before obesity treatment that cover three main areas: gastrointestinal symptoms and eating habits, physical activity and quality of life, and psychological health. We used random forest, with conditional variable importance, to study the relative importance of roughly 100 predictors of BMI, covering 15 domains. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36274
    “…Adult mosquitoes were collected from cowsheds, lakesides, shrubs, and habitats ranging from open grassland to coniferous forest using a Centers for Disease Control and Prevention (CDC) miniature light trap enhanced with dry ice, aspirators, and sweeping nets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36275
  16. 36276
  17. 36277
    “…Conditional average treatment effects (CATE) and 95% confidence intervals were computed from causal forest including 85 clinical and demographic variables. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36278
    “…We selected 13 of 65 baseline laboratory results to assess ICU admission risk, which were used to develop a risk prediction model with the random forest (RF) algorithm. A nomogram for the logistic regression model was built based on six selected variables. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36279
    “…Finally, machine learning (ML) techniques including neural networks, extreme gradient boosting, random forest, support vector machine, and decision tree are implemented for both approaches to predict LOS of patients admitted to the Emergency Department of Odense University Hospital between June 2018 and April 2019. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36280
    “…METHODS: We leveraged comprehensive datasets obtained from the Indiana Network for Patient Care to train decision forest-based models that can predict patient-level need of health care resource utilization. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS