Mostrando 36,281 - 36,300 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 1.51s Limitar resultados
  1. 36281
    “…For classification step, several machine learning models were designed for predicting glaucoma including Decision Trees (DTs), K-Nearest Neighbors (K-NN), Support Vector Machines (SVM), Random Forests (RFs), Extra Trees (ETs) and Bagging Ensemble methods. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36282
    “…Based on these patients’ demographic characteristics, early clinical and laboratory variables, and quantitative chest computerized tomography (CT) findings, we developed two random forest (RF) models able to predict intubation and intra-hospital mortality. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36283
    “…Four benchmark machine learning models, logistic regression (LR), random forest (RF), gradient boosting decision tree (GBDT) and a published cutting edge MMDL, were used to compare and evaluate the models with a fivefold cross-validation approach. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36284
    “…AIM: The purpose of this research is to use 7 lower left permanent teeth and three models [random forest (RF), support vector machine (SVM), and linear regression (LR)] based on the Cameriere method to predict children's dental age, and compare with the Cameriere age estimation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36285
  6. 36286
    “…Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36287
    “…We used binary logistic regression (LR) and random forest (RF) models incorporating natural language processing (NLP) to predict AA diagnosis among patients with undifferentiated symptoms. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36288
    “…Advanced statistics, including random forest (RF) feature selection and machine learning algorithms (K-nearest neighbor [KNN] and RF) were used to compare the diagnostic value of these parameters to identify patients with physical frailty. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36289
    “…After selecting features by the log-rank test and variable-hunting methods, random survival forest (RSF) models were built on the training set to analyze the prognostic value of selected features. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36290
    por Guo, Haihong, Li, Jiao, Liu, Hongyan, He, Jun
    Publicado 2022
    “…We compared the performance of the applied SRL-LSTM model and several state-of-the-art SL and RL models in reducing the estimated in-hospital mortality and the Jaccard similarity with clinicians’ decisions. We used a random forest algorithm to calculate the feature importance of both the clinician policy and the AI policy to illustrate the interpretability of the AI model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36291
    “…The prognostic signature was constructed depending on the risk score to assess the impact of multiple genes on the prognosis, receiver operating characteristic (ROC) curves and forest plot was constructed to assess the ability to predict the prognosis and effects of clinical variables in both high- and low-risk groups. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 36292
    “…This study aims to compare the cattle nasal microbiome (diversity, composition and community interaction) and the abundance of BRD pathogens (by qPCR) in the nasal microbiome of Holstein steers that are apparently healthy (Healthy group, n = 75) or with BRD clinical signs (BRD group, n = 58). We then used random forest models based on nasal microbial community and qPCR results to classify healthy and BRD-affected animals and determined the agreement with the visual clinical signs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36293
    “…Extremely randomized trees (ET), gradient boosting decision tree (GBDT), random forest (RF), extreme gradient boosting (XGBoost), and Lasso regression were carried out to establish and validate prediction models, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36294
    “…Clinical characteristics were revealed by The Cancer Genome Atlas (TCGA) data. A nomogram and forest plot were constructed based on univariate and multivariate Cox regression. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36295
    “…To address the problem of label availability, we created a platform that rigorously assesses and minimizes label error, and used it to iteratively train a Random Forests classifier with active learning, which identifies the most informative training sample based on prediction uncertainty. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36296
    “…Paddy rice field edge (2.03) has the highest value, followed by forest-farming ecotone (1.74), streamsides (1.71) and woodland (0.48). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36297
    “…In synthetic and toy tests LANDMark consistently ranked as the best classifier and often outperformed the Random Forest classifier. When trained on the full metabarcoding dataset obtained from Canada’s Wood Buffalo National Park, LANDMark was able to create highly predictive models and achieved an overall balanced accuracy score of 0.96 ± 0.06. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36298
  19. 36299
    “…We used these indicators to establish a random forest model. Seven models were built through different combinations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36300
    “…According to the Random Forest (RF) classifier, we found that dry period length, calf birth weight, and parity were the most important cow-level risk factors for the incidence of dystocia. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS