Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36281por Sharifi, Mahyar, Khatibi, Toktam, Emamian, Mohammad Hassan, Sadat, Somayeh, Hashemi, Hassan, Fotouhi, Akbar“…For classification step, several machine learning models were designed for predicting glaucoma including Decision Trees (DTs), K-Nearest Neighbors (K-NN), Support Vector Machines (SVM), Random Forests (RFs), Extra Trees (ETs) and Bagging Ensemble methods. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36282por Cena, Tiziana, Cammarota, Gianmaria, Azzolina, Danila, Barini, Michela, Bazzano, Simona, Zagaria, Domenico, Negroni, Davide, Castello, Luigi, Carriero, Alessandro, Corte, Francesco Della, Vaschetto, Rosanna“…Based on these patients’ demographic characteristics, early clinical and laboratory variables, and quantitative chest computerized tomography (CT) findings, we developed two random forest (RF) models able to predict intubation and intra-hospital mortality. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36283por Li, Haomin, Lu, Yang, Zeng, Xian, Fu, Cangcang, Duan, Huilong, Shu, Qiang, Zhu, Jihua“…Four benchmark machine learning models, logistic regression (LR), random forest (RF), gradient boosting decision tree (GBDT) and a published cutting edge MMDL, were used to compare and evaluate the models with a fivefold cross-validation approach. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36284“…AIM: The purpose of this research is to use 7 lower left permanent teeth and three models [random forest (RF), support vector machine (SVM), and linear regression (LR)] based on the Cameriere method to predict children's dental age, and compare with the Cameriere age estimation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36285por Medeiros, Ian D., Mazur, Edyta, Miadlikowska, Jolanta, Flakus, Adam, Rodriguez-Flakus, Pamela, Pardo-De la Hoz, Carlos J., Cieślak, Elżbieta, Śliwa, Lucyna, Lutzoni, François“…Photobionts from Trebouxia clade I occur at the upper extent of mid-elevation forest and at some open, high-elevation sites, while Trebouxia clades A and S dominate open habitats at high elevation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36286por Cao, Xiaoying, Xu, Lingxia, Wang, Jingyi, Dong, Mengmeng, Xu, Chunyan, Kai, Guoyin, Wan, Wen, Jiang, Jihong“…Therefore, it is of great significance to improve the yield of taxol by modern biotechnology without destroying the wild forest resources. Endophytic fungus which symbiosis with their host plants can promote the growth and secondary metabolism of medicinal plants. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36287por Su, Dai, Li, Qinmengge, Zhang, Tao, Veliz, Philip, Chen, Yingchun, He, Kevin, Mahajan, Prashant, Zhang, Xingyu“…We used binary logistic regression (LR) and random forest (RF) models incorporating natural language processing (NLP) to predict AA diagnosis among patients with undifferentiated symptoms. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36288por Kraus, Moritz, Saller, Maximilian Michael, Baumbach, Sebastian Felix, Neuerburg, Carl, Stumpf, Ulla Cordula, Böcker, Wolfgang, Keppler, Alexander Martin“…Advanced statistics, including random forest (RF) feature selection and machine learning algorithms (K-nearest neighbor [KNN] and RF) were used to compare the diagnostic value of these parameters to identify patients with physical frailty. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36289por Lv, Lilang, Xin, Bowen, Hao, Yichao, Yang, Ziyi, Xu, Junyan, Wang, Lisheng, Wang, Xiuying, Song, Shaoli, Guo, Xiaomao“…After selecting features by the log-rank test and variable-hunting methods, random survival forest (RSF) models were built on the training set to analyze the prognostic value of selected features. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36290“…We compared the performance of the applied SRL-LSTM model and several state-of-the-art SL and RL models in reducing the estimated in-hospital mortality and the Jaccard similarity with clinicians’ decisions. We used a random forest algorithm to calculate the feature importance of both the clinician policy and the AI policy to illustrate the interpretability of the AI model. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36291“…The prognostic signature was constructed depending on the risk score to assess the impact of multiple genes on the prognosis, receiver operating characteristic (ROC) curves and forest plot was constructed to assess the ability to predict the prognosis and effects of clinical variables in both high- and low-risk groups. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36292por Centeno-Martinez, Ruth Eunice, Glidden, Natalie, Mohan, Suraj, Davidson, Josiah Levi, Fernández-Juricic, Esteban, Boerman, Jacquelyn P., Schoonmaker, Jon, Pillai, Deepti, Koziol, Jennifer, Ault, Aaron, Verma, Mohit S., Johnson, Timothy A.“…This study aims to compare the cattle nasal microbiome (diversity, composition and community interaction) and the abundance of BRD pathogens (by qPCR) in the nasal microbiome of Holstein steers that are apparently healthy (Healthy group, n = 75) or with BRD clinical signs (BRD group, n = 58). We then used random forest models based on nasal microbial community and qPCR results to classify healthy and BRD-affected animals and determined the agreement with the visual clinical signs. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36293por Mo, Xiaolan, Chen, Xiujuan, Wang, Xianggui, Zhong, Xiaoli, Liang, Huiying, Wei, Yuanyi, Deng, Houliang, Hu, Rong, Zhang, Tao, Chen, Yilu, Gao, Xia, Huang, Min, Li, Jiali“…Extremely randomized trees (ET), gradient boosting decision tree (GBDT), random forest (RF), extreme gradient boosting (XGBoost), and Lasso regression were carried out to establish and validate prediction models, respectively. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36294por Chen, Shihong, Sun, Zhijian, Zhao, Weizhu, Meng, Mingyang, Guo, Wenyi, Wu, Dong, Shu, Qiang, Chai, Jie, Wang, Lei“…Clinical characteristics were revealed by The Cancer Genome Atlas (TCGA) data. A nomogram and forest plot were constructed based on univariate and multivariate Cox regression. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36295por Estes, Lyndon D., Ye, Su, Song, Lei, Luo, Boka, Eastman, J. Ronald, Meng, Zhenhua, Zhang, Qi, McRitchie, Dennis, Debats, Stephanie R., Muhando, Justus, Amukoa, Angeline H., Kaloo, Brian W., Makuru, Jackson, Mbatia, Ben K., Muasa, Isaac M., Mucha, Julius, Mugami, Adelide M., Mugami, Judith M., Muinde, Francis W., Mwawaza, Fredrick M., Ochieng, Jeff, Oduol, Charles J., Oduor, Purent, Wanjiku, Thuo, Wanyoike, Joseph G., Avery, Ryan B., Caylor, Kelly K.“…To address the problem of label availability, we created a platform that rigorously assesses and minimizes label error, and used it to iteratively train a Random Forests classifier with active learning, which identifies the most informative training sample based on prediction uncertainty. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36296por He, Jianwu, Peng, Liping, Li, Wei, Luo, Jin, Li, Qiang, Zeng, Hanyong, Ali, Maroof, Long, Chunlin“…Paddy rice field edge (2.03) has the highest value, followed by forest-farming ecotone (1.74), streamsides (1.71) and woodland (0.48). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36297por Rudar, Josip, Porter, Teresita M., Wright, Michael, Golding, G. Brian, Hajibabaei, Mehrdad“…In synthetic and toy tests LANDMark consistently ranked as the best classifier and often outperformed the Random Forest classifier. When trained on the full metabarcoding dataset obtained from Canada’s Wood Buffalo National Park, LANDMark was able to create highly predictive models and achieved an overall balanced accuracy score of 0.96 ± 0.06. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36298por Moisoiu, Tudor, Dragomir, Mihnea P., Iancu, Stefania D., Schallenberg, Simon, Birolo, Giovanni, Ferrero, Giulio, Burghelea, Dan, Stefancu, Andrei, Cozan, Ramona G., Licarete, Emilia, Allione, Alessandra, Matullo, Giuseppe, Iacob, Gheorghita, Bálint, Zoltán, Badea, Radu I., Naccarati, Alessio, Horst, David, Pardini, Barbara, Leopold, Nicolae, Elec, Florin“…Diagnostic accuracy was assessed using machine learning algorithms (logistic regression, naïve Bayes, and random forest), which were trained to discriminate between BC and CTRL, using as input either miRNAs, SERS, or both. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36299“…We used these indicators to establish a random forest model. Seven models were built through different combinations. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36300por Bahrami-Yekdangi, M., Ghorbani, G. R., Sadeghi-Sefidmazgi, A., Mahnani, A., Drackley, J. K., Ghaffari, M. H.“…According to the Random Forest (RF) classifier, we found that dry period length, calf birth weight, and parity were the most important cow-level risk factors for the incidence of dystocia. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto