Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36301Guideline for the diagnosis and treatment of Faecal Incontinence—A UEG/ESCP/ESNM/ESPCG collaborationpor Assmann, Sadé L., Keszthelyi, Daniel, Kleijnen, Jos, Anastasiou, Foteini, Bradshaw, Elissa, Brannigan, Ann E., Carrington, Emma V., Chiarioni, Giuseppe, Ebben, Liora D. A., Gladman, Marc A., Maeda, Yasuko, Melenhorst, Jarno, Milito, Giovanni, Muris, Jean W. M., Orhalmi, Julius, Pohl, Daniel, Tillotson, Yvonne, Rydningen, Mona, Svagzdys, Saulius, Vaizey, Carolynne J., Breukink, Stephanie O.“…Data from the studies were extracted by two reviewers for each predefined important outcome within each review question. Where possible, forest plots were created. After summarising the results for each review question, a systematic quality assessment using the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) approach was performed. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36302por Bian, Yiying, Huang, Jintao, Zeng, Ziliang, Yao, Hao, Tu, Jian, Wang, Bo, Zou, Yutong, Xie, Xianbiao, Shen, Jingnan“…Gene Ontology (GO) enrichment analysis revealed that the biological processes of these genes were primarily focused on the regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, collagen-containing extracellular matrix, and Rho GTPase binding. A random survival forest identified EPHB3, TEAD1, and KRR1P1 as key genes. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36303por Habte, Mekdes Hailegebreal, Seid, Seada Jemal, Alemu, Ayinalem, Hailemariam, Hanna Abera, Wudneh, Birhanu Asrat, Kasa, Rahel Nega, Bitew, Zebenay Workneh“…Data analyses were performed using STATA software. Forest plot, I(2) test and the Cochrane Q statistics were used to detect heterogeneity among studies. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36304por Atlaw, Daniel, Sahiledengle, Biniyam, Degno, Sisay, Mamo, Ayele, Gudisa, Zewudie, Zenbaba, Demisu, Shiferaw, Zerihun, Gezahegn, Habtamu“…Pooled utilization along with its corresponding 95% CI was presented using a forest plot. RESULT: About 1738 studies were retrieved from initial electronic searches using international databases and Google, and a total of 10,676 individual clients were included in the meta-analysis. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36305por Cheng, Samantha H., Costedoat, Sebastien, Sterling, Eleanor J., Chamberlain, Catherine, Jagadish, Arundhati, Lichtenthal, Peter, Nowakowski, A. Justin, Taylor, Auset, Tinsman, Jen, Canty, Steven W. J., Holland, Margaret B., Jones, Kelly W., Mills, Morena, Morales-Hidalgo, David, Sprenkle-Hyppolite, Starry, Wiggins, Meredith, Mascia, Michael B., Muñoz Brenes, Carlos L.“…All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36306por Costes, Valentin, Chaulot-Talmon, Aurélie, Sellem, Eli, Perrier, Jean-Philippe, Aubert-Frambourg, Anne, Jouneau, Luc, Pontlevoy, Charline, Hozé, Chris, Fritz, Sébastien, Boussaha, Mekki, Le Danvic, Chrystelle, Sanchez, Marie-Pierre, Boichard, Didier, Schibler, Laurent, Jammes, Hélène, Jaffrézic, Florence, Kiefer, Hélène“…In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36307por Lubasch, Johanna Sophie, Lee, Susan, Wirtz, Markus Antonius, Pfaff, Holger, Ansmann, Lena“…Convergent validity and criterion-related validity were tested using the following constructs: trust in nurses, trust in the treatment team (Wake Forest Physician Trust Scale, adapted), quality of life (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire), processes organisation, availability of nurses. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36308“…We then employed six machine learning algorithms, including decision tree, random forest, logistic regression, naïve Bayes, support vector machine, and extreme gradient boosting (XGBoost), to develop prediction models for MACE depending on clinical information and 6-month follow-up information. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36309por Liu, Xia, Zhou, Tao, Shi, Peijun, Zhang, Yajie, Luo, Hui, Yu, Peixin, Xu, Yixin, Zhou, Peifang, Zhang, Jingzhou“…Here, we took the Qinghai Plateau, the main component of the Tibetan Plateau, as our study region and applied three machine learning models (random forest, gradient boosting machine and support vector machine) to estimate the spatial and vertical distributions of the SOC stock and then evaluated the effects of the paleoclimate during the Last Glacial Maximum and the mid-Holocene periods as well as the human footprint on SOC stock at 0 to 200 cm depth by synthesizing 827 soil observations and 71 environmental factors. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36310por Ssenku, Jamilu E., Okurut, Shaban A., Namuli, Aidah, Kudamba, Ali, Tugume, Patience, Matovu, Paul, Wasige, Godfrey, Kafeero, Hussein M., Walusansa, Abdul“…The commonest conservation strategy was preservation of forests with spiritually valued species (100%), while compliance with government regulations was the rarest (4.5%). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36311por García-Hidalgo, María C., González, Jessica, Benítez, Iván D., Carmona, Paola, Santisteve, Sally, Pérez-Pons, Manel, Moncusí-Moix, Anna, Gort-Paniello, Clara, Rodríguez-Jara, Fátima, Molinero, Marta, Belmonte, Thalia, Torres, Gerard, Labarca, Gonzalo, Nova-Lamperti, Estefania, Caballero, Jesús, Bermejo-Martin, Jesús F., Ceccato, Adrián, Fernández-Barat, Laia, Ferrer, Ricard, Garcia-Gasulla, Dario, Menéndez, Rosario, Motos, Ana, Peñuelas, Oscar, Riera, Jordi, Torres, Antoni, Barbé, Ferran, de Gonzalo-Calvo, David“…Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (D(LCO)) and total severity score (TSS). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36312“…To ensure the availability of sufficient data prior to clinical diagnosis to test the model, only individuals who were diagnosed after age 10 were included in the analysis. A supervised random forest classifier was used to create an AI-assisted pre-screening tool to identify cases with FXS, 5 years earlier than the time of clinical diagnosis based on their medical records. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36313por Wang, Zhonglin, Ma, Yangming, Chen, Ping, Yang, Yonggang, Fu, Hao, Yang, Feng, Raza, Muhammad Ali, Guo, Changchun, Shu, Chuanhai, Sun, Yongjian, Yang, Zhiyuan, Chen, Zongkui, Ma, Jun“…Multivariate analysis (multiple stepwise regression, MSR; partial least square, PLS) and machine learning (random forest, RF) were used to evaluate the estimation performance of spectral parameters, texture parameters, and their combination for rice AGB. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36314por Quah, Yixian, Yi-Le, Jireh Chan, Park, Na-Hye, Lee, Yuan Yee, Lee, Eon-Bee, Jang, Seung-Hee, Kim, Min-Jeong, Rhee, Man Hee, Lee, Seung-Jin, Park, Seung-Chun“…Then, using the key features extracted, we employed five classification algorithms: extreme gradient boosting (XGBoost), random forest, support vector machine, artificial neural network, and decision tree to predict the bone quality in terms of T-score. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36315“…We selected the random forest model, which yielded the highest accuracy, for a more detailed audit and computed multiple metrics that are commonly used for fairness in the machine learning literature. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36316por Nowak, Jan K, Adams, Alex T, Kalla, Rahul, Lindstrøm, Jonas C, Vatn, Simen, Bergemalm, Daniel, Keita, Åsa V, Gomollón, Fernando, Jahnsen, Jørgen, Vatn, Morten H, Ricanek, Petr, Ostrowski, Jerzy, Walkowiak, Jaroslaw, Halfvarson, Jonas, Satsangi, Jack“…In the discovery cohort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest modelling, along with a pragmatic ratio detection procedure. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36317“…Five learning algorithms (Random Forest, Logistics Regression, Decision Tree, LinearSVC, and Naïve Bayes) with different combination of three vectorization methods (Doc2Vec, CountVectorizer, and TF-IDF) were deployed. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36318por Kunakorntham, Patratorn, Pattanaprateep, Oraluck, Dejthevaporn, Charungthai, Thammasudjarit, Ratchainant, Thakkinstian, Ammarin“…The study proposed 4 models, i.e., logistic regression (LR), Bayesian network (BN), random forests (RF), and extreme gradient boosting (XGBoost). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36319por Ahmad, Anum Ali, Zhang, Jianbo, Liang, Zeyi, Du, Mei, Yang, Yayuan, Zheng, Juanshan, Yan, Ping, Long, RuiJun, Tong, Bin, Han, Jianlin, Ding, Xuezhi“…The short chain fatty acid (SCFA) producing bacteria Rikenellaceae_RC9_gut_group showed high abundance in RM18 group and fiber degrading genus Alloprevotella was highly abundant in RM36 group. Random forest analysis identified Alloprevotella, Ileibacterium, and Helicobacter as important age discriminatory genera. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36320por Zheng, Yan, Lin, Yuan-Xiang, He, Qiu, Zhuo, Ling-Yun, Huang, Wei, Gao, Zhu-Yu, Chen, Ren-Long, Zhao, Ming-Pei, Xie, Ze-Feng, Ma, Ke, Fang, Wen-Hua, Wang, Deng-Liang, Chen, Jian-Cai, Kang, De-Zhi, Lin, Fu-Xin“…Univariate and multivariate analyses were used for variable filtering, and logistic regression (LR), Gaussian naïve Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGB), and ensemble soft voting model (ESVM) were adopted for ML model derivations. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto