Mostrando 36,301 - 36,320 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.31s Limitar resultados
  1. 36301
    “…Data from the studies were extracted by two reviewers for each predefined important outcome within each review question. Where possible, forest plots were created. After summarising the results for each review question, a systematic quality assessment using the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) approach was performed. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36302
    “…Gene Ontology (GO) enrichment analysis revealed that the biological processes of these genes were primarily focused on the regulation of small guanosine triphosphatase (GTPase) mediated signal transduction, collagen-containing extracellular matrix, and Rho GTPase binding. A random survival forest identified EPHB3, TEAD1, and KRR1P1 as key genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36303
  4. 36304
    “…Pooled utilization along with its corresponding 95% CI was presented using a forest plot. RESULT: About 1738 studies were retrieved from initial electronic searches using international databases and Google, and a total of 10,676 individual clients were included in the meta-analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36305
  6. 36306
    “…In order to evaluate the prognostic value of fertility-related DMCs, the sperm samples were split between training (n = 67) and testing (n = 33) sets. Using a Random Forest approach, a predictive model was built from the methylation values obtained on the training set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36307
    “…Convergent validity and criterion-related validity were tested using the following constructs: trust in nurses, trust in the treatment team (Wake Forest Physician Trust Scale, adapted), quality of life (European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire), processes organisation, availability of nurses. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36308
    “…We then employed six machine learning algorithms, including decision tree, random forest, logistic regression, naïve Bayes, support vector machine, and extreme gradient boosting (XGBoost), to develop prediction models for MACE depending on clinical information and 6-month follow-up information. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36309
    “…Here, we took the Qinghai Plateau, the main component of the Tibetan Plateau, as our study region and applied three machine learning models (random forest, gradient boosting machine and support vector machine) to estimate the spatial and vertical distributions of the SOC stock and then evaluated the effects of the paleoclimate during the Last Glacial Maximum and the mid-Holocene periods as well as the human footprint on SOC stock at 0 to 200 cm depth by synthesizing 827 soil observations and 71 environmental factors. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36310
    “…The commonest conservation strategy was preservation of forests with spiritually valued species (100%), while compliance with government regulations was the rarest (4.5%). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36311
  12. 36312
    “…To ensure the availability of sufficient data prior to clinical diagnosis to test the model, only individuals who were diagnosed after age 10 were included in the analysis. A supervised random forest classifier was used to create an AI-assisted pre-screening tool to identify cases with FXS, 5 years earlier than the time of clinical diagnosis based on their medical records. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36313
    “…Multivariate analysis (multiple stepwise regression, MSR; partial least square, PLS) and machine learning (random forest, RF) were used to evaluate the estimation performance of spectral parameters, texture parameters, and their combination for rice AGB. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36314
    “…Then, using the key features extracted, we employed five classification algorithms: extreme gradient boosting (XGBoost), random forest, support vector machine, artificial neural network, and decision tree to predict the bone quality in terms of T-score. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36315
    “…We selected the random forest model, which yielded the highest accuracy, for a more detailed audit and computed multiple metrics that are commonly used for fairness in the machine learning literature. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36316
  17. 36317
    “…Five learning algorithms (Random Forest, Logistics Regression, Decision Tree, LinearSVC, and Naïve Bayes) with different combination of three vectorization methods (Doc2Vec, CountVectorizer, and TF-IDF) were deployed. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36318
    “…The study proposed 4 models, i.e., logistic regression (LR), Bayesian network (BN), random forests (RF), and extreme gradient boosting (XGBoost). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36319
    “…The short chain fatty acid (SCFA) producing bacteria Rikenellaceae_RC9_gut_group showed high abundance in RM18 group and fiber degrading genus Alloprevotella was highly abundant in RM36 group. Random forest analysis identified Alloprevotella, Ileibacterium, and Helicobacter as important age discriminatory genera. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36320
    “…Univariate and multivariate analyses were used for variable filtering, and logistic regression (LR), Gaussian naïve Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), extreme gradient boosting (XGB), and ensemble soft voting model (ESVM) were adopted for ML model derivations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS