Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36321por Purwanto, Purwanto, Astuti, Ike Sari, Rohman, Fatchur, Utomo, Kresno Sastro Bangun, Aldianto, Yulius Eka“…Spatial downscaling of LST using the Random Forest Regression technique was also carried out to transform the spatial resolution of the Terra-MODIS LST image to make it feasible on a city scale. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36322por Reed, James, Chervier, Colas, Borah, Joli Rumi, Gumbo, Davison, Moombe, Kaala B., Mbanga, Teddy M., O’Connor, Alida, Siangulube, Freddie, Yanou, Malaika, Sunderland, Terry“…Here, we address this gap by applying the principles of landscape approaches and knowledge co-production to co-produce a theory of change to address current unsustainable landscape management and associated conflicts in the Kalomo Hills Local Forest Reserve No. P.13 (KFR13) of Zambia. The participatory process engaged a diverse range of stakeholders including village head people, local and international researchers, district councillors, and civil society representatives amongst others. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36323“…Relative risk (RR) was calculated from forest plots and outcomes using random-effects model (REM). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36324“…The dominant climate variables affecting NDVI variation were selected through the combination of random forest model and stepwise regression method to improve the residual trend analysis, and on this basis, twelve possible scenarios were established to evaluate the driving factors of different degraded grasslands. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36325por Hong, Sen-Yuan, Yang, Yuan-Yuan, Xu, Jin-Zhou, Xia, Qi-Dong, Wang, Shao-Gang, Xun, Yang“…Extensive and close connections among genera and species were observed in the correlation analysis. Moreover, a random forest classifier was constructed using specific enriched species, which can distinguish the stone side from the non-stone side with an accuracy of 71.2%. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36326“…Based on supervised learning algorithms, namely random forest classifier (RFC), artificial neural network(ANN), support vector machine(SVM), decision tree(DT), and extreme gradient boosting gradient(XGboost) algorithm, the LNM prediction model was constructed, and the prediction efficiency of ML-based model was evaluated via receiver operating characteristic curve(ROC) and decision curve analysis(DCA). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36327por Gagnon-Sanschagrin, Patrick, Schein, Jeff, Urganus, Annette, Serra, Elizabeth, Liang, Yawen, Musingarimi, Primrose, Cloutier, Martin, Guérin, Annie, Davis, Lori L.“…METHODS: The IBM® MarketScan® Commercial Subset (10/01/2015–12/31/2018) was used. A random forest machine learning model was developed and trained to differentiate between patients with and without PTSD using non–trauma-based features. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36328por Bockstal, Viki, Shukarev, Georgi, McLean, Chelsea, Goldstein, Neil, Bart, Stephan, Gaddah, Auguste, Anumenden, Dickson, Stoop, Jeroen N., Marit de Groot, Anne, Pau, Maria G., Hendriks, Jenny, De Rosa, Stephen C., Cohen, Kristen W., McElrath, M. Juliana, Callendret, Benoit, Luhn, Kerstin, Douoguih, Macaya, Robinson, Cynthia“…MVA-BN-Filo is a multivalent vector encoding EBOV, SUDV, and MARV GPs, and Taï Forest nucleoprotein. This Phase 1, randomized, double-blind, placebo-controlled study enrolled healthy adults (18–50 years) into four groups, randomized 5:1 (active:placebo), to assess different Ad26.Filo and MVA-BN-Filo vaccine directionality and administration intervals. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36329por Dykstra, Steven, Satriano, Alessandro, Cornhill, Aidan K., Lei, Lucy Y., Labib, Dina, Mikami, Yoko, Flewitt, Jacqueline, Rivest, Sandra, Sandonato, Rosa, Feuchter, Patricia, Howarth, Andrew G., Lydell, Carmen P., Fine, Nowell M., Exner, Derek V., Morillo, Carlos A., Wilton, Stephen B., Gavrilova, Marina L., White, James A.“…Seven thousand, six hundred thirty-nine had no prior history of AF and were eligible to train and validate machine learning algorithms. Random survival forests (RSFs) were used to predict new-onset AF and compared to Cox proportional-hazard (CPH) models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36330por Krnic Martinic, Marina, Malisa, Snjezana, Aranza, Diana, Civljak, Marta, Marušić, Ana, Sapunar, Damir, Poklepovic Pericic, Tina, Buljan, Ivan, Tokalic, Ruzica, Cavic, Dalibor, Puljak, Livia“…Suggestions to improve the educational intervention were to provide more details about the forest plot, add more digital content or images, provide more details about the methodological steps of an SR, add descriptions about practical applications of SRs and provide links to additional educational materials. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36331“…An observational, retrospective, cross-sectional cohort study was conducted in accordance with TRIPOD statement. Breiman's random forest model was applied to calculate variable importance (VIMP) for items in PG-SGA and EORTC QLQ-C30 (Chinese version) for nutritional recommendation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36332por Ghiam, Shokoofeh, Eslahchi, Changiz, Shahpasand, Koorosh, Habibi-Rezaei, Mehran, Gharaghani, Sajjad“…A feature selection algorithm was used to select six important features for D. Using a random forest classifier, these features were capable of classifying D(+) and D(−) with an accuracy of 82.5%. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36333por Doheny, Emer P., Flood, Matthew, Ryan, Silke, McCarthy, Cormac, O'Carroll, Orla, O'Seaghdha, Conall, Mallon, Patrick W., Feeney, Eoin R., Keatings, Vera M., Wilson, Moya, Kennedy, Niall, Gannon, Avril, Edwards, Colin, Lowery, Madeleine M.“…In this study, data recorded during the initial ten days of monitoring were retrospectively examined, and a random forest model was developed to predict SpO(2) < 94 % on a given day using SpO(2) and HR data from the two previous days and day of discharge. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36334por Liu, Yichuan, Qu, Hui-Qi, Chang, Xiao, Mentch, Frank D, Qiu, Haijun, Nguyen, Kenny, Wang, Xiang, Saeidian, Amir Hossein, Watson, Deborah, Glessner, Joseph, Hakonarson, Hakon“…The targeted genes/non-coding RNAs were further reduced using random forest and forward feature selection (ffs) models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36335por Sievering, Aaron W., Wohlmuth, Peter, Geßler, Nele, Gunawardene, Melanie A., Herrlinger, Klaus, Bein, Berthold, Arnold, Dirk, Bergmann, Martin, Nowak, Lorenz, Gloeckner, Christian, Koch, Ina, Bachmann, Martin, Herborn, Christoph U., Stang, Axel“…METHODS: We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March–November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36336por Plana, Maria N., Arevalo-Rodriguez, Ingrid, Fernández-García, Silvia, Soto, Javier, Fabregate, Martin, Pérez, Teresa, Roqué, Marta, Zamora, Javier“…The application interface has an intuitive design set out in four main menus: file upload; graphical description (forest and ROC plane plots); meta-analysis (pooling of sensitivity and specificity, estimation of likelihood ratios and diagnostic odds ratio, sROC curve); and summary of findings (impact of test through downstream consequences in a hypothetical population with a given prevalence). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36337por Cirillo, Chiara, Nakou, Eleni, Georgiopoulos, Georgios, Tountas, Christos, Victor, Kelly, Marvaki, Apostolia, Desai, Nishita, Fisher, Richard, Ryan, Matthew, Demir, Ozan M, Corcoran, Eleanor, O’Gallagher, Kevin, Sinclair, Hannah, Pericao, Ana, Dhariwal, Anender, Stylianidis, Vasileios, Hua, Alina, Nabeebaccus, Adam Abner, Pearson, Peter, Fonseca, Tiago, Osborne, Andrew, Toth, Eva, Zuckerman, Mark, Shah, Ajay M, Perera, Divaka, Monaghan, Mark, Carr-White, Gerald, Papachristidis, Alexandros“…Following multiple imputation of variables with more than 5% missing values, random forest analysis was applied to the imputed data. Right ventricular (RV) basal diameter (RVD1), RV mid-cavity diameter (RVD2), tricuspid annular plane systolic excursion, RV systolic pressure, hypertension, RV dysfunction, troponin level on admission, peak CRP, creatinine level on ICU admission, body mass index and age were found to have a high relative importance (> 0.7). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36338por Guo, Lanyan, Wang, Bo, Zhang, Fuyang, Gao, Chao, Hu, Guangyu, Zhou, Mengyao, Wang, Rutao, Zhao, Hang, Yan, Wenjun, Zhang, Ling, Ma, Zhiling, Yang, Weiping, Guo, Xiong, Huang, Chong, Cui, Zhe, Sun, Fangfang, Song, Dandan, Liu, Liwen, Tao, Ling“…Three separate classification algorithms, including random forest, support vector machine, and logistic regression, were applied for the identification of specific AA and derivatives compositions for HCM and the development of screening models to discriminate HCM from NC as well as HOCM from HNCM. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36339por Villalba, Julian A., Hilburn, Caroline F., Garlin, Michelle A., Elliott, Grant A., Li, Yijia, Kunitoki, Keiko, Poli, Sergio, Alba, George A., Madrigal, Emilio, Taso, Manuel, Price, Melissa C., Aviles, Alexis J., Araujo-Medina, Milagros, Bonanno, Liana, Boyraz, Baris, Champion, Samantha N., Harris, Cynthia K., Helland, Timothy L., Hutchison, Bailey, Jobbagy, Soma, Marshall, Michael S., Shepherd, Daniel J., Barth, Jaimie L., Hung, Yin P., Ly, Amy, Hariri, Lida P., Turbett, Sarah E., Pierce, Virginia M., Branda, John A., Rosenberg, Eric S., Mendez-Pena, Javier, Chebib, Ivan, Rosales, Ivy A., Smith, Rex N., Miller, Miles A., Rosas, Ivan O., Hardin, Charles C., Baden, Lindsey R., Medoff, Benjamin D., Colvin, Robert B., Little, Brent P., Stone, James R., Mino-Kenudson, Mari, Shih, Angela R.“…Machine-learning-derived morphometric analysis of the microvasculature was performed, with a random forest classifier quantifying vascular congestion (C(Vasc)) in different microscopic compartments. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36340por Sorayaie Azar, Amir, Babaei Rikan, Samin, Naemi, Amin, Bagherzadeh Mohasefi, Jamshid, Pirnejad, Habibollah, Bagherzadeh Mohasefi, Matin, Wiil, Uffe Kock“…Six Machine Learning (ML) models, including K-Nearest Neighbors , Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost), are implemented for survival prediction in both classification and regression approaches. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto