Mostrando 36,341 - 36,360 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.39s Limitar resultados
  1. 36341
    “…Eight machine learning algorithms, such as logistic regression (LR), random forest (RF), Decision Tree, K-nearest neighbors (KNN), Gradient Boosting Decision Tree Machine (GBDT), Support Vector Machine (SVM), Neural Network (NN), and Extreme Gradient Boosting (XGBoost), were conducted to construct the predictive model for in-hospital mortality and performance was evaluated by average precision (AP) and area under the receiver operating characteristic curve (AUC). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36342
    “…Gdaphen can determine the strongest variables that predict gene dosage effects thanks to the General Linear Model (GLM)-based classifiers or determine the most discriminative not linear distributed variables thanks to Random Forest (RF) implementation. Moreover, Gdaphen provides the efficacy of each classifier and several visualization options to fully understand and support the results as easily readable plots ready to be included in publications. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36343
    “…METHODS: We proposed a 3-step approach to deal with data quality issues: a random forest (RF) for missing values, k-means for imbalanced data, and principal component analysis (PCA) for sparse features. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36344
    “…PURPOSE: The border between the State of Amapa, Brazil, and French Guiana is mostly primary forest. In the Oyapock basin, socioeconomic circumstances have fueled sex work, gold mining and the circulation of sexually transmitted infections. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36345
  6. 36346
    “…In this experiment, three ensemble learning models, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), were established using data collected in the field for different years and some environmental variables, After the accuracy validation of the model, XGBoost had the highest accuracy of salinity prediction in this study area, with RMSE of 17.62 dS m(−1), R(2) of 0.73 and RPIQ of 2.45 in the test set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36347
    “…ML models include an original partial logistic artificial neural network for CRs (PLANNCR original), a PLANNCR with novel specifications in terms of architecture (PLANNCR extended), and a random survival forest for CRs (RSFCR). The clinical endpoint is the time in years between surgery and disease progression (event of interest) or death (competing event). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36348
    “…Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36349
  10. 36350
    “…We used NaiveBeyas, Logistic, IBk, and RandomForest algorithms to build a disease diagnosis model using the hub genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36351
  12. 36352
  13. 36353
  14. 36354
    “…Logistic regression (LR), support vector machine (SVM), and random forest classification (RFC) models were trained by two different groups of datasets, the group of multi-class features and the group of density features, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36355
    “…GLCM-based Score and Machine learning algorithm, that is,artificial neural net7work model(ANNM), random forest model(RFM), decision tree model(DTM) and support vector machine model(SVMM) were used to build prediction model of bone metastasis in colorectal cancer patients. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36356
    “…Multivariate Cox analysis revealed that low LMR (HR = 1.49, p = 0.041), advanced FIGO stage (HR = 5.25, p < 0.001), and undefined residual disease (HR = 3.77, p = 0.002) were independent factors in predicting poor OS. A forest plot revealed that LMR had better prognostic value in younger EOC patients, patients with BMI ≥ 25 kg/m(2) and albumin ≥ 35 g/L, CA125 ≥ 35 U/L, patients who had undergone optimal surgery, and those who had completed chemotherapy. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36357
    “…In addition, we used least absolute shrinkage and selection operator (LASSO), support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms to screen the key ARGs in ischemic stroke. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36358
    “…Support Vector Machine (SVM) and Random Forest (RF) are used to obtain the classification results of speaker embeddings in nine speech tasks. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36359
  20. 36360
    “…In order to determine the benefits of FTL, two experiments were conducted to measure the voluntary feed intake, growth performance, and nitrogen utilization of forest-type (FT) sheep fed rice straw (RS) and supplemented with either Leucaena leucocephala (LEU) or Samanea saman (SAM) or their equal combination (LS). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS