Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36381“…Six classifiers, including Gaussian naive Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM) with a linear kernel, adaptive boosting (AB), and multilayer perceptron (MLP) were used to establish predictive models, and the predictive performance of the six classifiers was evaluated through five-fold cross-validation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36382por Chounta, Stefania, Allodji, Rodrigue, Vakalopoulou, Maria, Bentriou, Mahmoud, Do, Duyen Thi, De Vathaire, Florent, Diallo, Ibrahima, Fresneau, Brice, Charrier, Thibaud, Zossou, Vincent, Christodoulidis, Stergios, Lemler, Sarah, Letort Le Chevalier, Veronique“…From the heart–dose distribution of each survivor, we extracted 93 first-order and spatial dosiomics features. We trained random forest algorithms adapted for imbalanced classification and evaluated their predictive performance compared to the performance of standard mean heart dose (MHD)-based models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36383“…The heterogeneity of studies was determined using the Cochrane Q test statistic and I(2) test statistics with forest plots. A random effects model was used to examine the pooled burden of neural tube defects, subgroups of the region, subtypes of NTDs, sensitivity analysis, and publication bias. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36384por Kulinkina, Alexandra V., Farnham, Andrea, Biritwum, Nana-Kwadwo, Utzinger, Jürg, Walz, Yvonne“…We derived environmental variables from fine-resolution RS data (Landsat 8) and examined a variable distance radius (1–5 km) for aggregating these variables around point-prevalence locations in a non-parametric random forest modeling approach. We used partial dependence and individual conditional expectation plots to improve interpretability of results. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36385por Lin, Yingxin, Teixeira-Pinto, Armando, Craig, Jonathan C, Opdam, Helen, Chapman, Jeremy C, Pleass, Henry, Carter, Angus, Rogers, Natasha M, Davies, Christopher E, McDonald, Stephen, Yang, Jean, Lim, Wai H, Wong, Germaine“…For every 1 mmHg/min reduction in the rate of decline of SBP, the respective aORs for DGF were 0.95 (95% CI 0.91–0.99) and 0.98 (95% CI 0.93–1.0) in the random forest and least absolute shrinkage and selection operator models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36386por Shan, Dezhi, Wang, Siyu, Wang, Junjie, Lu, Jun, Ren, Junhong, Chen, Juan, Wang, Daming, Qi, Peng“…Machine learning algorithms containing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perception (MLP) were used to construct the models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36387“…We performed the receiver operating characteristic (ROC) analysis to compare the performance of four models, and we found that the Random Forest (RF) model had the highest AUC value of 1.000. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36388“…Absolute Factor Score/Multiple Linear Regression (APCS/MLR), geographic information system (GIS), self-organizing mapping (SOM), and random forest (RF) are used for the source allocation of soil heavy metals. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36389por Tali, George, Payne, Alexandra E., Hudson, Thomas J., da Silva, Sabrina Daniela, Pusztaszeri, Marc, Tamilia, Michael, Forest, Véronique-IsabelleEnlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36390por Selimovic, Vanessa, Ketcherside, Damien, Chaliyakunnel, Sreelekha, Wielgasz, Catherine, Permar, Wade, Angot, Hélène, Millet, Dylan B., Fried, Alan, Helmig, Detlev, Hu, Lu“…The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s(−1), roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36391por Nadarajah, Ramesh, Wu, Jianhua, Hogg, David, Raveendra, Keerthenan, Nakao, Yoko M, Nakao, Kazuhiro, Arbel, Ronen, Haim, Moti, Zahger, Doron, Parry, John, Bates, Chris, Cowan, Campbel, Gale, Chris P“…METHODS: We used primary care electronic health record data from individuals aged ≥30 years without known AF in the UK Clinical Practice Research Datalink-GOLD dataset between 2 January 1998 and 30 November 2018, randomly divided into training (80%) and testing (20%) datasets. We trained a random forest classifier using age, sex, ethnicity and comorbidities. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36392por Kujawa, Aaron, Dorent, Reuben, Connor, Steve, Oviedova, Anna, Okasha, Mohamed, Grishchuk, Diana, Ourselin, Sebastien, Paddick, Ian, Kitchen, Neil, Vercauteren, Tom, Shapey, Jonathan“…The first approach applies a second CNN to the segmentation output to predict the Koos grade, the other approach extracts handcrafted features which are passed to a Random Forest classifier. The pipeline results were compared to those achieved by two neurosurgeons. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36393“…Data were gathered as part of the Dundrum Forensic Redevelopment Evaluation Study (D-FOREST). (Davoren et al., BMJ Open (2022) 12(7): e058581) RESULTS: During the 68-months there were 76 admissions. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36394por Moore, Abi, Coyle, Conor, Seeley, Anna, Cherrington-Walker, Phoebe, Khan, Maaedah, Fanshawe, Thomas, Pouwels, Koen, Lecky, Donna, Hayward, Gail, Cooper, Emily“…Using standard meta-analysis methods we will generate forest plots showing prevalence and 95% CIs for each study. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36395“…Prediction models were built and internally validated via multinomial logistic regression (MLR) and random forest (RF). The MLR and RF model performance was compared by accuracy and the discriminability of mSI subgroups (i.e., p-value of one-sided binomial test between the accuracy and no information rate). …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36396por Bhat-Ambure, Jyotsna, Ambure, Pravin, Serrano-Candelas, Eva, Galiana-Roselló, Cristina, Gil-Martínez, Ariadna, Guerrero, Mario, Martin, Margarita, González-García, Jorge, García-España, Enrique, Gozalbes, Rafael“…Multi-tasking QSAR models were developed using linear discriminant analysis and random forest machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization, G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g., G4 sequences, endpoints, cell lines, buffers, and assays). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36397por Fiore, Giorgio, Tariciotti, Leonardo, Bertani, Giulio Andrea, Gagliano, Dario, D’Ammando, Antonio, Ampollini, Antonella Maria, Schisano, Luigi, Borsa, Stefano, Pluderi, Mauro, Locatelli, Marco, Caroli, Manuela“…The pooled estimates were calculated using random forest models. The risk of bias was evaluated using the RoB2 revised tool and the certainty of the evidence was assessed according to the GRADE guidelines. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36398por Bohou Kombila, Linda, N’dilimabaka, Nadine, Garcia, Déborah, Rieu, Océane, Engone Ondo, Jéordy Dimitri, Ndong Mebaley, Telstar, Boundenga, Larson, Fritz, Matthieu, Lenguiya, Léadisaelle Hosanna, Maganga, Gael Darren, Leroy, Eric M., Becquart, Pierre, Mombo, Illich Manfred“…Here, we screened for AstVs, EVs, and CaVs to investigate the role of domestic animals in the emergence of zoonoses, because they are situated at the human/wildlife interface, particularly in rural forested areas in Central Africa. Rectal swabs were obtained from 123 goats, 41 sheep, and 76 dogs in 10 villages located in northeastern Gabon. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36399por Frosch, Zachary A. K., Hasler, Jill, Handorf, Elizabeth, DuBois, Tesla, Bleicher, Richard J., Edelman, Martin J., Geynisman, Daniel M., Hall, Michael J., Fang, Carolyn Y., Lynch, Shannon M.“…DESIGN, SETTING, AND PARTICIPANTS: This cohort study evaluated 4 different machine learning approaches for estimating the likelihood of a treatment delay greater than 60 days (group least absolute shrinkage and selection operator [LASSO], bayesian additive regression tree, gradient boosting, and random forest). Criteria for selecting between approaches were discrimination, calibration, and interpretability/simplicity. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36400por Zeleke, Addisu Jember, Palumbo, Pierpaolo, Tubertini, Paolo, Miglio, Rossella, Chiari, Lorenzo“…We deployed six classification algorithms for predicting PLoS: Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GB), AdaBoost, K-Nearest Neighbors (KNN), and logistic regression (LoR). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto