Mostrando 36,381 - 36,400 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.28s Limitar resultados
  1. 36381
    “…Six classifiers, including Gaussian naive Bayes (GNB), random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM) with a linear kernel, adaptive boosting (AB), and multilayer perceptron (MLP) were used to establish predictive models, and the predictive performance of the six classifiers was evaluated through five-fold cross-validation. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36382
    “…From the heart–dose distribution of each survivor, we extracted 93 first-order and spatial dosiomics features. We trained random forest algorithms adapted for imbalanced classification and evaluated their predictive performance compared to the performance of standard mean heart dose (MHD)-based models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36383
    por Wakoya, Reta, Afework, Mekbeb
    Publicado 2023
    “…The heterogeneity of studies was determined using the Cochrane Q test statistic and I(2) test statistics with forest plots. A random effects model was used to examine the pooled burden of neural tube defects, subgroups of the region, subtypes of NTDs, sensitivity analysis, and publication bias. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36384
    “…We derived environmental variables from fine-resolution RS data (Landsat 8) and examined a variable distance radius (1–5 km) for aggregating these variables around point-prevalence locations in a non-parametric random forest modeling approach. We used partial dependence and individual conditional expectation plots to improve interpretability of results. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36385
    “…For every 1 mmHg/min reduction in the rate of decline of SBP, the respective aORs for DGF were 0.95 (95% CI 0.91–0.99) and 0.98 (95% CI 0.93–1.0) in the random forest and least absolute shrinkage and selection operator models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36386
    “…Machine learning algorithms containing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perception (MLP) were used to construct the models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36387
    “…We performed the receiver operating characteristic (ROC) analysis to compare the performance of four models, and we found that the Random Forest (RF) model had the highest AUC value of 1.000. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36388
    por Jiang, Zaiju, Yang, Shaozhang, Luo, Sha
    Publicado 2023
    “…Absolute Factor Score/Multiple Linear Regression (APCS/MLR), geographic information system (GIS), self-organizing mapping (SOM), and random forest (RF) are used for the source allocation of soil heavy metals. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36389
  10. 36390
    “…The median campaign-calculated OHr from VOCs measured at TFS was 0.7 s(−1), roughly 5 % of the values typically reported in lower-latitude forested ecosystems. Ten species account for over 80 % of the calculated VOC OHr, with formaldehyde, isoprene and acetaldehyde together accounting for nearly half of the total. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36391
    “…METHODS: We used primary care electronic health record data from individuals aged ≥30 years without known AF in the UK Clinical Practice Research Datalink-GOLD dataset between 2 January 1998 and 30 November 2018, randomly divided into training (80%) and testing (20%) datasets. We trained a random forest classifier using age, sex, ethnicity and comorbidities. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 36392
    “…The first approach applies a second CNN to the segmentation output to predict the Koos grade, the other approach extracts handcrafted features which are passed to a Random Forest classifier. The pipeline results were compared to those achieved by two neurosurgeons. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36393
    “…Data were gathered as part of the Dundrum Forensic Redevelopment Evaluation Study (D-FOREST). (Davoren et al., BMJ Open (2022) 12(7): e058581) RESULTS: During the 68-months there were 76 admissions. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36394
  15. 36395
    “…Prediction models were built and internally validated via multinomial logistic regression (MLR) and random forest (RF). The MLR and RF model performance was compared by accuracy and the discriminability of mSI subgroups (i.e., p-value of one-sided binomial test between the accuracy and no information rate). …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36396
    “…Multi-tasking QSAR models were developed using linear discriminant analysis and random forest machine learning techniques for predicting the responses of interest (G4 interaction, G4 stabilization, G4 selectivity, and cytotoxicity) considering the variations in the experimental conditions (e.g., G4 sequences, endpoints, cell lines, buffers, and assays). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36397
    “…The pooled estimates were calculated using random forest models. The risk of bias was evaluated using the RoB2 revised tool and the certainty of the evidence was assessed according to the GRADE guidelines. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36398
    “…Here, we screened for AstVs, EVs, and CaVs to investigate the role of domestic animals in the emergence of zoonoses, because they are situated at the human/wildlife interface, particularly in rural forested areas in Central Africa. Rectal swabs were obtained from 123 goats, 41 sheep, and 76 dogs in 10 villages located in northeastern Gabon. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36399
    “…DESIGN, SETTING, AND PARTICIPANTS: This cohort study evaluated 4 different machine learning approaches for estimating the likelihood of a treatment delay greater than 60 days (group least absolute shrinkage and selection operator [LASSO], bayesian additive regression tree, gradient boosting, and random forest). Criteria for selecting between approaches were discrimination, calibration, and interpretability/simplicity. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36400
    “…We deployed six classification algorithms for predicting PLoS: Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GB), AdaBoost, K-Nearest Neighbors (KNN), and logistic regression (LoR). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS