Mostrando 36,621 - 36,640 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.46s Limitar resultados
  1. 36621
    “…We compared the performance of the MTCNN models against single-task CNN models and 2 traditional machine learning approaches, namely support vector machine (SVM) and random forest classifier (RFC). RESULTS: MTCNNs offered superior performance across all 5 tasks in terms of classification accuracy as compared with the other machine learning models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36622
    “…We counted the APRI, NLR, PLR, and LMR before treatment and calculated their cut-off values for predicting overall survival (OS) and progression-free survival (PFS) by receiver operating characteristic (ROC) analysis. The random forest model combined with least absolute shrinkage and selection operator (LASSO) regression model for OS and PFS were used to screen potentially prognostic factors from serum inflammatory markers, demographic data, and clinical characteristics. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36623
    “…We test hypotheses regarding putative forest refugia and expansion events associated with past climatic changes in the wood frog Batrachyla leptopus distributed along ∼1,000 km of length including glaciated and non-glaciated areas in southwestern Patagonia. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36624
  5. 36625
  6. 36626
  7. 36627
    por Baek, Bin, Lee, Hyunju
    Publicado 2020
    “…When support vector machines, random forest, logistic regression, and L2 regularized logistic regression were used as prediction models, logistic regression analysis generally revealed the best performance for both disease-free survival (DFS) and overall survival (OS) (accuracy [ACC] = 0.762 and area under the curve [AUC] = 0.795 for DFS; ACC = 0.776 and AUC = 0.769 for OS). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36628
    “…The final models were based on ensemble learning that combined predictions from elastic net penalized logistic regression, random forest, gradient boosting, and a neural network. The area under the receiver operating characteristic (ROC) curves (AUCs) on the test set were 0.88 (95% confidence interval [CI] = 0.87–0.89) and 0.89 (95% CI = 0.88–0.90) for the outcome within 90 days and 30 days, respectively, both being significantly better than chance (i.e., AUC = 0.50) (p < 0.01). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36629
    “…Multivariate logistic regression analysis and the forest plot of hazard ratio (HR) was made to assess the association between potential prognostic factors, including surgery and different surgical methods, and survival in elderly patients. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36630
    “…Sequential forward feature selection in combination with machine learning (ML) algorithms (support vector machine, random forest, and logistic regression) were used to build radiomics signatures for each specific risk group. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36631
    por Spiegel, Jacob, Senderowitz, Hanoch
    Publicado 2020
    “…Finally, we demonstrated that when tested as binary classifiers, models derived for the same targets by the new algorithm outperformed Random Forest (RF) and Support Vector Machine (SVM)-based models across training/validation/test sets, in most cases. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 36632
  13. 36633
    “…We then established two classification models (support vector machine [SVM] and random forest [RF]) to verify the efficiency of the retained features. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36634
    “…Finally, four machine learning algorithms, back propagation neural network (BPNN), support vector machine (SVM), extreme learning machine (ELM) and random forest (RF), were used to build inversion models at each depth. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36635
    “…Among 1840 subjects with AIS, 645 patients (35.1%) had a poor outcome 3 months after the stroke onset. Random forest was the best classifier (0.782 of AUROC) using a word-level approach. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36636
    “…METHODS: Clinical samples from patients with suspected infection during calendar year 2018 and 2019 were processed in the microbiology lab of Wake Forest Baptist Medical Center. After incubation, SM colonies were identified by MALDI-TOF system. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36637
    “…Additional clinical data such as comorbid disease and baseline laboratory parameters were extracted through electronic query. A random forest model imputed missing data. A propensity score for NSAID use was developed via logistic regression and included gender, back pain, baseline serum creatinine, osteoarthritis, rheumatoid arthritis, serum albumin, and use of anticoagulant or antiplatelet medications. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36638
  19. 36639
    “…Further, we used the Oncomine analysis, survival analysis, GEO data set and random forest algorithm to verify the important roles of hub genes in HCC. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36640
Herramientas de búsqueda: RSS