Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36641por Seo, Dongwon, Cho, Sunghyun, Manjula, Prabuddha, Choi, Nuri, Kim, Young-Kuk, Koh, Yeong Jun, Lee, Seung Hwan, Kim, Hyung-Yong, Lee, Jun Heon“…Moreover, 36, 44, and 8 SNPs were selected as the minimum numbers of markers by the AdaBoost (AB), Random Forest (RF), and Decision Tree (DT) machine learning classification models, which had accuracy rates of 99.6%, 98.0%, and 97.9%, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36642por Matheny, Michael E., Ricket, Iben, Goodrich, Christine A., Shah, Rashmee U., Stabler, Meagan E., Perkins, Amy M., Dorn, Chad, Denton, Jason, Bray, Bruce E., Gouripeddi, Ram, Higgins, John, Chapman, Wendy W., MacKenzie, Todd A., Brown, Jeremiah R.“…Multiple risk prediction models were developed using parametric models (elastic net, least absolute shrinkage and selection operator, and ridge regression) and nonparametric models (random forest and gradient boosting). The models were assessed using holdout data with area under the receiver operating characteristic curve (AUROC), percentage of calibration, and calibration curve belts. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36643por Cox, Jiayi W., Sherva, Richard M., Lunetta, Kathryn L., Saitz, Richard, Kon, Mark, Kranzler, Henry R., Gelernter, Joel, Farrer, Lindsay A.“…METHODS: We employed multiple machine learning prediction algorithms least absolute shrinkage and selection operator, random forest, deep neural network, and support vector machine to assess factors associated with ceasing opioid use in a sample of 1,192 African Americans (AAs) and 2,557 individuals of European ancestry (EAs) who met Diagnostic and Statistical Manual of Mental Disorders, 5th Edition criteria for OUD. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36644“…In the TCGA-GBM data, modelBuildR allowed best prognostic separation of patients with highest median overall survival difference (7.51 months) followed a difference of 6.04 months for a random forest based method. CONCLUSIONS: The proposed heuristic is beneficial for the retrieval of features associated with two true groups classified with errors. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36645por Cepeda, Santiago, García-García, Sergio, Arrese, Ignacio, Fernández-Pérez, Gabriel, Velasco-Casares, María, Fajardo-Puentes, Manuel, Zamora, Tomás, Sarabia, Rosario“…Then, logistic regression (LR) with LASSO (least absolute shrinkage and selection operator) regularization, support vector machine (SVM), random forest (RF), neural network (NN), and k-nearest neighbor (kNN) were used as classification algorithms. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36646por Alamneh, Alehegn Aderaw, Leshargie, Cheru Tesema, Desta, Melaku, Birhanu, Molla Yigzaw, Assemie, Moges Agazhe, Denekew, Habtamu Temesgen, Alamneh, Yoseph Merkeb, Ketema, Daniel Bekele“…The pooled proportion with a 95% confidence interval (CI) was presented using tables and forest plots. RESULTS: We screened a total of 195 articles. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36647por Vitense, Philipp, Kasbohm, Elisa, Klassen, Anne, Gierschner, Peter, Trefz, Phillip, Weber, Michael, Miekisch, Wolfram, Schubert, Jochen K., Möbius, Petra, Reinhold, Petra, Liebscher, Volkmar, Köhler, Heike“…To address variation of the patterns, a flexible and robust machine learning workflow was set up, based on random forest classifiers, and comprising three steps: variable selection, parameter optimization, and classification. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36648por Xie, Jinke, Li, Basen, Min, Xiangde, Zhang, Peipei, Fan, Chanyuan, Li, Qiubai, Wang, Liang“…The diagnostic performance of nearest neighbor algorithm (NNA) and support vector machine (SVM) was better than random forests (RF) in the training cohort. The AUC, sensitivity, and specificity of NNA were 0.872 (95% CI: 0.750−0.994), 0.967, and 0.778, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36649por Samiei, Sanaz, Granzier, Renée W. Y., Ibrahim, Abdalla, Primakov, Sergey, Lobbes, Marc B. I., Beets-Tan, Regina G. H., van Nijnatten, Thiemo J. A., Engelen, Sanne M. E., Woodruff, Henry C., Smidt, Marjolein L.“…Features were selected in the training cohorts using recursive feature elimination with repeated 5-fold cross-validation, followed by the development of random forest models. The performance of the models was assessed using the area under the curve (AUC). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36650por Sadozai, Hassan, Acharjee, Animesh, Eppenberger-Castori, Serenella, Gloor, Beat, Gruber, Thomas, Schenk, Mirjam, Karamitopoulou, Eva“…A large proportion of LTS cases exhibited tertiary lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic marker in a number of tumor types. Using a Random-Forest variable selection approach, we identified the density of stromal iNOS(+) cells and CD68(+) cells as strong positive and negative prognostic variables, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36651“…We developed 5 ML-assisted models from 22 clinical features using logistic regression (LR), LR optimized by least absolute shrinkage and selection operator (Lasso) regularization (Lasso-LR), support vector machine (SVM), extreme gradient boosting (XGBoost), and random forest (RF). The area under the curve (AUC) was applied to determine the model with the highest discrimination. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36652por Navarro, Marie C., Ouellet-Morin, Isabelle, Geoffroy, Marie-Claude, Boivin, Michel, Tremblay, Richard E., Côté, Sylvana M., Orri, Massimiliano“…Participants were followed-up from birth to age 20 years. Random forest classification algorithms were developed to predict suicide attempt. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36653por Henderson, Sarah B., Morrison, Kathryn T., McLean, Kathleen E., Ding, Yue, Yao, Jiayun, Shaddick, Gavin, Buckeridge, David L.“…Every morning BCAPS generated forecasts of salbutamol sulfate (e.g., Ventolin) inhaler dispensations for the upcoming days in 16 Health Service Delivery Areas (HSDAs) using random forest machine learning. These forecasts were compared with observations over a 63-day study period using different methods including the index of agreement (IOA), which ranges from 0 (no agreement) to 1 (perfect agreement). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36654por Cusimano, Michael D., Saha, Ashirbani, Zhang, Daniel, Zhang, Stanley, Casey, Julia, Rabski, Jessica, Carpino, Melissa, Hwang, Stephen W.“…Leave-one-out cross-validation using random forest classifier was applied to determine the ability of predicting TBI. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36655por Pan, Zhe, Chen, Yanhong, McAllister, Tim A., Gänzle, Michael, Plastow, Graham, Guan, Le Luo“…Correlation analysis showed that the expression of stx2 was negatively correlated with the expression of MS4A1 (R=-0.56, P=0.05) and positively correlated with the expression of LTB (R=0.60, P=0.05). The random forest model and Boruta method revealed that expression of selected immune genes could be predictive indicators of stx2 expression with prediction accuracy of MS4A1 >LTB >CCL21 >CD19. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36656por Xue, Bing, Li, Dingwen, Lu, Chenyang, King, Christopher R., Wildes, Troy, Avidan, Michael S., Kannampallil, Thomas, Abraham, Joanna“…Patient and clinical characteristics available preoperatively, intraoperatively, and a combination of both were used as inputs for 5 candidate ML models: logistic regression, support vector machine, random forest, gradient boosting tree (GBT), and deep neural network (DNN). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36657por Deng, Junhao, Wang, Guoqi, Li, Jia, Wang, Song, Li, Miao, Yin, Xiaohong, Zhang, Licheng, Tang, Peifu“…We also assessed the heterogeneity among studies and publication bias via the I-squared index and forest plots. RESULTS: There was no significant difference between arthroplasty and internal fixation groups in patient mortality at both short-term and long-term points. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36658por Kassuhn, Wanja, Klein, Oliver, Darb-Esfahani, Silvia, Lammert, Hedwig, Handzik, Sylwia, Taube, Eliane T., Schmitt, Wolfgang D., Keunecke, Carlotta, Horst, David, Dreher, Felix, George, Joshy, Bowtell, David D., Dorigo, Oliver, Hummel, Michael, Sehouli, Jalid, Blüthgen, Nils, Kulbe, Hagen, Braicu, Elena I.“…We elucidated a MALDI-derived proteomic signature (135 peptides) able to classify HGSOC subtypes. Random forest classifiers achieved an area under the curve (AUC) of 0.983. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36659por Karunakaran, Kalyani B., Yanamala, Naveena, Boyce, Gregory, Becich, Michael J., Ganapathiraju, Madhavi K.“…Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36660por Pérez-Torres, Claudia-Anahí, Ibarra-Laclette, Enrique, Hernández-Domínguez, Eric-Edmundo, Rodríguez-Haas, Benjamín, Pérez-Lira, Alan-Josué, Villafán, Emanuel, Alonso-Sánchez, Alexandro, García-Ávila, Clemente de Jesús, Ramírez-Pool, José-Abrahán, Sánchez-Rangel, Diana“…This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto