Mostrando 36,661 - 36,680 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.43s Limitar resultados
  1. 36661
  2. 36662
    “…Integrating quantitative MGMTp methylation levels from pyrosequencing, GTR, and non-SVZ infringement showed the best discriminative ability in the random forest model for derivation and validation set (AUC: 0.937, 0.911, respectively). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36663
  4. 36664
  5. 36665
    “…VI data are predicted using machine learning (ml): Random Forest (RF) and Correlation and Regression Trees (CART). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36666
    “…Radiomics, clinical, and combined models were developed using random forest classifiers in each strategy. The analysis of radiomics features had no added value in predicting pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients compared with the clinical models, nor did the combined models perform significantly better than the clinical models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36667
    “…With MIMIC-III data, a mortality prediction model was built based on the random forest (RF) algorithm, and the performance was compared to those of existing scoring systems based on logistic regression. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36668
    “…To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36669
    “…The I(2) statistic and Q-test values of the included studies revealed acceptable homogeneity for studied three IL-1 gene polymorphisms (IL-1A−889: I(2) =0%, IL-1B − 511: I(2) = 0%, IL-1B+3954: I(2) = 24%). Forest plot of association between IL-1B−511 gene and ECBL revealed a significant association between 2/2 genotype of IL-1B−511 gene and an increased risk of ECBL (OR = 0.23, 95% CI = 0.09–0.58, P(heterogeneity)= 0.68, I(2) = 0%, and P = 0.002). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36670
  11. 36671
  12. 36672
  13. 36673
    “…Nine different models, including two machine learning (random forest and support vector machine) and two deep learning models (convolutional neural network and multilayer perceptron) were explored for cross-validation, forward, and across locations predictions. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36674
    “…The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36675
    “…The proposed method has two models: (a) RCNN: Random Forest (RF) is combined with CNN and (b) XCNN: eXtreme Gradient Boosting (XGBoost) is combined with CNN. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36676
    “…Four machine learning risk models were constructed to predict the incidence of postoperative delirium: random forest, eXtreme Gradient Boosting (XGBoosting), support vector machine (SVM), and multilayer perception (MLP). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36677
    “…Optimal diagnostic lncRNA and miRNA biomarkers were identified via random forest. The regulatory network between optimal diagnostic lncRNA and mRNAs and optimal diagnostic miRNA and mRNAs was identified, followed by the construction of ceRNA network of lncRNA-mRNA-miRNA. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36678
  19. 36679
    “…We also compared the performance of multiple classifiers (Random Forest, K-nearest neighbor, Adaboost, SVM) and verified the reliability of our results by upsampling. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36680
    “…Finally, we used the microbial community data to develop random forest models that predict PMI with an accuracy of approximately ±34 days over a 1- to 9-month time frame of decomposition. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS