Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36661por Peeken, Jan C., Neumann, Jan, Asadpour, Rebecca, Leonhardt, Yannik, Moreira, Joao R., Hippe, Daniel S., Klymenko, Olena, Foreman, Sarah C., von Schacky, Claudio E., Spraker, Matthew B., Schaub, Stephanie K., Dapper, Hendrik, Knebel, Carolin, Mayr, Nina A., Woodruff, Henry C., Lambin, Philippe, Nyflot, Matthew J., Gersing, Alexandra S., Combs, Stephanie E.“…Three machine learning techniques (elastic net regression (ENR), least absolute shrinkage and selection operator, and random survival forest) were compared to predict OS. Results: ENR models achieved the best predictive performance. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36662por Li, Mingxiao, Ren, Xiaohui, Dong, Gehong, Wang, Jincheng, Jiang, Haihui, Yang, Chuanwei, Zhao, Xuzhe, Zhu, Qinghui, Cui, Yong, Yu, Kefu, Lin, Song“…Integrating quantitative MGMTp methylation levels from pyrosequencing, GTR, and non-SVZ infringement showed the best discriminative ability in the random forest model for derivation and validation set (AUC: 0.937, 0.911, respectively). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36663por Lin, Ming-Yen, Li, Chi-Chun, Lin, Pin-Hsiu, Wang, Jiun-Long, Chan, Ming-Cheng, Wu, Chieh-Liang, Chao, Wen-Cheng“…We used three ML models, namely, extreme gradient boosting (XGBoost), random forest (RF), and logistic regression (LR), to establish the prediction model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36664por Umeoguaju, Francis U., Ephraim-Emmanuel, Benson C., Uba, Joy O., Bekibele, Grace E., Chigozie, Nwondah, Orisakwe, Orish Ebere“…Statistical analysis and forest plot were done with R statistical software (version 3.6.1). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36665“…VI data are predicted using machine learning (ml): Random Forest (RF) and Correlation and Regression Trees (CART). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36666por Granzier, Renée W. Y., Ibrahim, Abdalla, Primakov, Sergey P., Samiei, Sanaz, van Nijnatten, Thiemo J. A., de Boer, Maaike, Heuts, Esther M., Hulsmans, Frans-Jan, Chatterjee, Avishek, Lambin, Philippe, Lobbes, Marc B. I., Woodruff, Henry C., Smidt, Marjolein L.“…Radiomics, clinical, and combined models were developed using random forest classifiers in each strategy. The analysis of radiomics features had no added value in predicting pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients compared with the clinical models, nor did the combined models perform significantly better than the clinical models. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36667por Huang, Bingsheng, Liang, Dong, Zou, Rushi, Yu, Xiaxia, Dan, Guo, Huang, Haofan, Liu, Heng, Liu, Yong“…With MIMIC-III data, a mortality prediction model was built based on the random forest (RF) algorithm, and the performance was compared to those of existing scoring systems based on logistic regression. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36668“…To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36669por Agrawal, Kaushal Kishor, Anwar, Mohd, Gupta, Charu, Chand, Pooran, Singh, Saumyendra Vikram“…The I(2) statistic and Q-test values of the included studies revealed acceptable homogeneity for studied three IL-1 gene polymorphisms (IL-1A−889: I(2) =0%, IL-1B − 511: I(2) = 0%, IL-1B+3954: I(2) = 24%). Forest plot of association between IL-1B−511 gene and ECBL revealed a significant association between 2/2 genotype of IL-1B−511 gene and an increased risk of ECBL (OR = 0.23, 95% CI = 0.09–0.58, P(heterogeneity)= 0.68, I(2) = 0%, and P = 0.002). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36670por Guo, Haoyue, Li, Binglei, Diao, Li, Wang, Hao, Chen, Peixin, Jiang, Minlin, Zhao, Lishu, He, Yayi, Zhou, Caicun“…Based on the univariable Cox regression, random forests were used to establish risk models for OS and DFS. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36671por Wilairatana, Polrat, Mala, Wanida, Rattaprasert, Pongruj, Kotepui, Kwuntida Uthaisar, Kotepui, Manas“…The outcomes of each study were shown in a forest plot in point estimate and 95% confidence interval (CI). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36672por Scobeyeva, Victoria A., Artyushin, Ilya V., Krinitsina, Anastasiya A., Nikitin, Pavel A., Antipin, Maxim I., Kuptsov, Sergei V., Belenikin, Maxim S., Omelchenko, Denis O., Logacheva, Maria D., Konorov, Evgenii A., Samoilov, Andrey E., Speranskaya, Anna S.“…Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36673“…Nine different models, including two machine learning (random forest and support vector machine) and two deep learning models (convolutional neural network and multilayer perceptron) were explored for cross-validation, forward, and across locations predictions. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36674por Shehata, Mohamed, Alksas, Ahmed, Abouelkheir, Rasha T., Elmahdy, Ahmed, Shaffie, Ahmed, Soliman, Ahmed, Ghazal, Mohammed, Abu Khalifeh, Hadil, Salim, Reem, Abdel Razek, Ahmed Abdel Khalek, Alghamdi, Norah Saleh, El-Baz, Ayman“…The obtained results using the proposed MLP-ANN classification model outperformed other machine learning classifiers (e.g., support vector machine, random forests, relational functional gradient boosting, etc.). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36675por Liu, Zhipeng, Thapa, Niraj, Shaver, Addison, Roy, Kaushik, Siddula, Madhuri, Yuan, Xiaohong, Yu, Anna“…The proposed method has two models: (a) RCNN: Random Forest (RF) is combined with CNN and (b) XCNN: eXtreme Gradient Boosting (XGBoost) is combined with CNN. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36676“…Four machine learning risk models were constructed to predict the incidence of postoperative delirium: random forest, eXtreme Gradient Boosting (XGBoosting), support vector machine (SVM), and multilayer perception (MLP). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36677por Yang, Fei, Zhang, Jie, Li, Baokun, Zhao, Zhijun, Liu, Yan, Zhao, Zhen, Jing, Shanghua, Wang, Guiying“…Optimal diagnostic lncRNA and miRNA biomarkers were identified via random forest. The regulatory network between optimal diagnostic lncRNA and mRNAs and optimal diagnostic miRNA and mRNAs was identified, followed by the construction of ceRNA network of lncRNA-mRNA-miRNA. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36678por Rouchka, Eric C., Chariker, Julia H., Alejandro, Brian, Adcock, Robert S., Singhal, Richa, Ramirez, Julio, Palmer, Kenneth E., Lasnik, Amanda B., Carrico, Ruth, Arnold, Forest W., Furmanek, Stephen, Zhang, Mei, Wolf, Leslie A., Waigel, Sabine, Zacharias, Wolfgang, Bordon, Jose, Chung, DonghoonEnlace del recurso
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36679por Zhang, Tingting, Liao, Qian, Zhang, Danmei, Zhang, Chao, Yan, Jing, Ngetich, Ronald, Zhang, Junjun, Jin, Zhenlan, Li, Ling“…We also compared the performance of multiple classifiers (Random Forest, K-nearest neighbor, Adaboost, SVM) and verified the reliability of our results by upsampling. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36680A Pilot Study of Microbial Succession in Human Rib Skeletal Remains during Terrestrial Decompositionpor Deel, Heather, Emmons, Alexandra L., Kiely, Jennifer, Damann, Franklin E., Carter, David O., Lynne, Aaron, Knight, Rob, Xu, Zhenjiang Zech, Bucheli, Sibyl, Metcalf, Jessica L.“…Finally, we used the microbial community data to develop random forest models that predict PMI with an accuracy of approximately ±34 days over a 1- to 9-month time frame of decomposition. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto