Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36681“…Here, we have used a genotyping-by-sequencing (GBS) approach for genotyping 256 samples from the European bison population in Bialowieza Forest (Poland) and performed an analysis using two integrated pipelines of the STACKS software: one is de novo (without reference genome) and the other is a reference pipeline (with reference genome). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36682por Rupprechter, Samuel, Morinan, Gareth, Peng, Yuwei, Foltynie, Thomas, Sibley, Krista, Weil, Rimona S., Leyland, Louise-Ann, Baig, Fahd, Morgante, Francesca, Gilron, Ro’ee, Wilt, Robert, Starr, Philip, Hauser, Robert A., O’Keeffe, Jonathan“…These features characterized key aspects of the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal random forest classification model (with one class for each of the possible ratings) was trained and evaluated using 10-fold cross validation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36683por Yoon, Hyun Jin, Cho, Kook, Kim, Woong Gon, Jeong, Young-Jin, Jeong, Ji-Eun, Kang, Do-Young“…The 2 groups were classified with an accuracy of 85.5% using the support vector machine and 88.4% using the random forest. The classification accuracy using the eXtreme Gradient Boosting was 95.7%, and feature importance was highest in order of SUV bias-corrected kurtosis, size-zone-variability, intensity-variability, and high-intensity-zone-variability. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36684por Hosseini-Esfahani, Firoozeh, Alafchi, Behnaz, Cheraghi, Zahra, Doosti-Irani, Amin, Mirmiran, Parvin, Khalili, Davood, Azizi, Fereidoun“…The importance of variables was obtained by the training set using the random forest model for determining factors with the greatest contribution to developing MetS. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36685por Pyrgidis, Nikolaos, Mykoniatis, Ioannis, Haidich, Anna-Bettina, Tirta, Maria, Talimtzi, Persefoni, Kalyvianakis, Dimitrios, Ouranidis, Andreas, Hatzichristou, Dimitrios“…We considered systematic reviews, meta-analyses or network meta-analyses of randomized trials that provided outcomes about the efficacy and safety of any approved PDE5 inhibitor (avanafil, sildenafil, tadalafil and vardenafil). We constructed forest plots for meta-analytic effects regarding the change in erectile function, adverse events and dropouts after administration of PDE5 inhibitors in the general population and in specific patient groups. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36686por Liu, Qiufang, Li, Jiaru, Xin, Bowen, Sun, Yuyun, Feng, Dagan, Fulham, Michael J., Wang, Xiuying, Song, Shaoli“…After selecting radiomic features by the random forest, relevancy-based, and sequential forward selection methods, the BalancedBagging ensemble classifier was established for the preoperative prediction of LNMs, and the OneVsRest classifier for the N stage. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36687por Rauseo, Elisa, Izquierdo Morcillo, Cristian, Raisi-Estabragh, Zahra, Gkontra, Polyxeni, Aung, Nay, Lekadir, Karim, Petersen, Steffen E.“…Systematic feature selection combined with machine learning (ML) algorithms (support vector machine and random forest) and 10-fold cross-validation tests were used to build the radiomics signature for each condition. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36688por Wang, Yongfeng, Fu, Liangyin, Lu, Tingting, Zhang, Guangming, Zhang, Jiawei, Zhao, Yuanbin, Jin, Haojie, Yang, Kehu, Cai, Hui“…Then, we extracted valid data and used Stata software to make forest plots. We used the hazard ratio (HR) or odds ratio (OR) with 95% CI to evaluate the relationship between aberrant expression of MIAT and patients' prognosis and clinicopathological features. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36689por Kasper, Philipp, Nhlema, Angellina, de Forest, Andrew, Tweya, Hannock, Chaweza, Thom, Mwagomba, Beatrice Matanje, Mula, Adam M., Chiwoko, Jane, Neuhann, Florian, Phiri, Sam, Steffen, Hans-MichaelEnlace del recurso
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36690“…The results were presented using forest plots, and Cochrane Q-test and I(2) were used to measure the extents of between-study variations. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36691por Guo, Aixia, Foraker, Randi E., MacGregor, Robert M., Masood, Faraz M., Cupps, Brian P., Pasque, Michael K.“…Twenty-seven clinically-relevant features were synthesized and utilized in supervised deep learning and machine learning algorithms (i.e., deep neural networks [DNN], random forest [RF], and logistic regression [LR]) to explore their ability to predict 1-year mortality by five-fold cross validation methods. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36692por Cepeda, Santiago, Pérez-Nuñez, Angel, García-García, Sergio, García-Pérez, Daniel, Arrese, Ignacio, Jiménez-Roldán, Luis, García-Galindo, Manuel, González, Pedro, Velasco-Casares, María, Zamora, Tomas, Sarabia, Rosario“…Additionally, a survival analysis was performed using the random survival forest (RSF) algorithm. A total of 203 patients were enrolled in this study. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36693por Nong, Shunqiang, Chen, Xiaohao, Wang, Zechen, Xu, Guidan, Wei, Wujun, Peng, Bin, Zhou, Lü, Wei, Liuzhi, Zhao, Jingjie, Wei, Qiuju, Deng, Yibin, Meng, Lingzhang“…The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36694por Zhang, Zhi, Xu, Duo, Fang, Jianyang, Wang, Dai, Zeng, Jie, Liu, Xiaodong, Hong, Shouqiang, Xue, Yunxin, Zhang, Xianzhong, Zhao, Xilin“…Since microbiota resemble complex forest ecosystems more closely than individual patches of trees, the overall landscape (spatial and temporal distribution) of gut bacteria may also affect/reflect disease development. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36695por Tomkovich, Sarah, Taylor, Ana, King, Jacob, Colovas, Joanna, Bishop, Lucas, McBride, Kathryn, Royzenblat, Sonya, Lesniak, Nicholas A., Bergin, Ingrid L., Schloss, Patrick D.“…When we trained a random forest model with community data from 5 days postchallenge, we were able to predict which mice would exhibit prolonged colonization (area under the receiver operating characteristic curve [AUROC] = 0.90). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36696por Sepehri, Shima, Tankyevych, Olena, Iantsen, Andrei, Visvikis, Dimitris, Hatt, Mathieu, Cheze Le Rest, Catherine“…Logistic regression (LR), random forest (RF), and support vector machine (SVM), as well as their consensus through averaging the output probabilities, were considered for feature selection and modeling for overall survival (OS) prediction as a binary classification (either median OS or 6 months OS). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36697por Kou, Yongping, Liu, Yanjiao, Li, Jiabao, Li, Chaonan, Tu, Bo, Yao, Minjie, Li, Xiangzhen“…However, nirK-type denitrifier communities formed two distinct clusters that were primarily separated by elevation, whereas nirS-type denitrifier communities formed three distinct clusters that were primarily separated by forest type along the elevation gradient. Moreover, deterministic processes were dominant in governing the assemblages of nirK-type and nirS-type denitrifiers. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36698por Grzenda, Adrienne, Speier, William, Siddarth, Prabha, Pant, Anurag, Krause-Sorio, Beatrix, Narr, Katherine, Lavretsky, Helen“…Three classification algorithms were compared: (1) Support Vector Machine-Radial Bias Function (SVMRBF), (2) Random Forest (RF), and (3) Logistic Regression (LR). A repeated 5-fold cross-validation approach with a wrapper-based feature selection method was used for model fitting. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36699“…This internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (handheld, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use Precise Point Positioning (PPP) to improve positioning without any additional equipment. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36700por Sun, Yuantong, Zheng, Weiwei, Zhang, Ling, Zhao, Huijuan, Li, Xun, Zhang, Chao, Ma, Wuren, Tian, Dajun, Yu, Kun-Hsing, Xiao, Shuo, Jin, Liping, Hua, Jing“…We compared Area Under Curve (AUC) for dichotomous outcomes and macro F1 score for categorical outcomes among four machine learning models, including logistic model, random forest model, XGBoost model, and multilayer neural network models to assess model performance. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto