Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36721por Yanda, Lambert, Tatsimo, Simplice J. N., Tamokou, Jean-De-Dieu, Matsuete-Takongmo, Germaine, Meffo-Dongmo, Sylvie Carolle, Meli Lannang, Alain, Sewald, Norbert“…Taub (Mimosaceae) is a large tree native to dry tropical Africa and characteristic of dry leguminous forests. Different parts of this plant are used to treat wounds, skin infection, and to fight against cancer. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36722por Fan, Kai, Dhammapala, Ranil, Harrington, Kyle, Lamastro, Ryan, Lamb, Brian, Lee, Yunha“…Our ozone forecasting system consists of two ML models, ML1 and ML2, to improve predictability: ML1 uses the random forest (RF) classifier and multiple linear regression (MLR) models, and ML2 uses a two-phase RF regression model with best-fit weighting factors. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36723“…The two machine learning algorithms were Neural Network Autoregression (NNAR) and Random Forest (RF). A hybrid model combining the statistical and algorithmic approaches (ARIMA-Boosted) was also explored. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36724por Na, Ji-Eun, Lee, Yeong-Chan, Kim, Tae-Jun, Lee, Hyuk, Won, Hong-Hee, Min, Yang-Won, Min, Byung-Hoon, Lee, Jun-Haeng, Rhee, Poong-Lyul, Kim, Jae J.“…The ML model was built based on a development set (70%) using logistic regression, random forest (RF), and support vector machine (SVM) analyses and assessed in a validation set (30%). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36725por Bauleo, Lisa, Giannini, Simone, Ranzi, Andrea, Nobile, Federica, Stafoggia, Massimo, Ancona, Carla, Iavarone, Ivano“…We also included in the analysis PM(2.5), PM(10) and NO(2) population weighted exposure (PWE) values obtained using a four-stage approach based on the machine learning method, “random forest”, which uses space–time predictors, satellite data, and air quality monitoring data estimated at the national level. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36726por Ma, Lidi, Deng, Kan, Zhang, Cheng, Li, Haixia, Luo, Yingwei, Yang, Yingsi, Li, Congrui, Li, Xinming, Geng, Zhijun, Xie, Chuanmiao“…Nomograms estimating OS and early recurrence were constructed using multivariate Cox regression analysis, based on the random survival forest (RSF) model. We evaluated the discrimination and calibration abilities of the nomograms using concordance indices (C-index), calibration curves, and Kaplan‒Meier curves. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36727por Fagerlund, Annette, Idland, Lene, Heir, Even, Møretrø, Trond, Aspholm, Marina, Lindbäck, Toril, Langsrud, Solveig“…Isolation of L. monocytogenes from various rural and urban environments showed higher prevalence in agricultural and urban developments than in forest or mountain areas, and that detection was positively associated with rainfall. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36728por Chen, Weihao, Lv, Xiaoyang, Zhang, Weibo, Hu, Tingyan, Cao, Xiukai, Ren, Ziming, Getachew, Tesfaye, Mwacharo, Joram M., Haile, Aynalem, Sun, Wei“…Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36729“…ABSTRACT: Ambrosia beetles bore into the xylem of woody plants, reduce timber quality, and can sometimes cause devastating damage to forest ecosystems. The colonization by different beetle species is dependent on host status, from healthy trees to the early stages of wood decay, although the precise factors influencing their host selection are not well known. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36730por Jones, Jeffrey J., Wilcox, Bruce E., Benz, Ryan W., Babbar, Naveen, Boragine, Genna, Burrell, Ted, Christie, Ellen B., Croner, Lisa J., Cun, Phong, Dillon, Roslyn, Kairs, Stefanie N., Kao, Athit, Preston, Ryan, Schreckengaust, Scott R., Skor, Heather, Smith, William F., You, Jia, Hillis, W. Daniel, Agus, David B., Blume, John E.“…RESULTS: Using one half of the data as a discovery set (69 disease cases and 69 control cases), the elastic net feature selection and random forest classifier assembly were used in cross-validation to identify a 15-transition classifier. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36731“…Differentially expressed genes (DEGs) were selected between platinum-sensitive and platinum-resistant patients from the training cohort, and multiple machine-learning algorithms [including random forest, XGboost, and least absolute shrinkage and selection operator (LASSO) regression] were utilized to determine the candidate genes from DEGs. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36732por Liu, Yichuan, Qu, Hui-Qi, Chang, Xiao, Tian, Lifeng, Glessner, Joseph, Sleiman, Patrick A. M., Hakonarson, Hakon“…Analysis was performed using machine learning methods, including random forest and factor analysis, to prioritize the numbers of genes from previous SCZ studies. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36733“…RevMan 5.3 software was applied to analyze the data and generate the forest plot and funnel plot. Meanwhile, publication bias was also assessed by Egger’s test with STATA 12 software. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36734por Zou, Yutong, Zhao, Lijun, Zhang, Junlin, Wang, Yiting, Wu, Yucheng, Ren, Honghong, Wang, Tingli, Zhang, Rui, Wang, Jiali, Zhao, Yuancheng, Qin, Chunmei, Xu, Huan, Li, Lin, Chai, Zhonglin, Cooper, Mark E., Tong, Nanwei, Liu, Fang“…Four machine learning algorithms (gradient boosting machine, support vector machine, logistic regression, and random forest (RF)) were used to identify the critical clinical and pathological features and to build a risk prediction model for ESRD. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36735por He, Zhiyuan, Ma, Yulin, Chen, Xu, Liu, Shuai, Xiao, Jianxin, Wang, Yajing, Wang, Wei, Yang, Hongjian, Li, Shengli, Cao, Zhijun“…In addition, there exists a strongly positive relation between GA, short-chain fatty acid (SCFA) or other prebiotics, and those commensals using random forest machine learning algorithm and Spearman correlation analyses. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36736
-
36737por Islam, Sheikh Mohammed Shariful, Talukder, Ashis, Awal, Md. Abdul, Siddiqui, Md. Muhammad Umer, Ahamad, Md. Martuza, Ahammed, Benojir, Rawal, Lal B., Alizadehsani, Roohallah, Abawajy, Jemal, Laranjo, Liliana, Chow, Clara K., Maddison, Ralph“…We applied six common ML-based classifiers: decision tree (DT), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), logistic regression (LR), and linear discriminant analysis (LDA) to predict hypertension and its risk factors. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36738por Xu, Yaolin, Zhang, Yueming, Han, Siyang, Jin, Dayong, Xu, Xuefeng, Kuang, Tiantao, Wu, Wenchuan, Wang, Dansong, Lou, Wenhui“…We investigated potential prognostic factors via Cox proportional hazards model and Kaplan–Meier estimator. Nomogram model and forest plot were constructed to illustrate the prognostic value of age. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36739por Wlodarczyk, Aleksandra, Molek, Patrycja, Bochenek, Bogdan, Wypych, Agnieszka, Nessler, Jadwiga, Zalewski, Jaroslaw“…The predicted daily number of ACS has been estimated with the Random Forest machine learning system based on air temperature (°C), air pressure (hPa), dew point temperature (Td) (°C), relative humidity (RH) (%), wind speed (m/s), and precipitation (mm) and their daily extremes and ranges derived from the day of ACS and from 6 days before ACS. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36740por Shiroma, Hirotsugu, Shiba, Satoshi, Erawijantari, Pande Putu, Takamaru, Hiroyuki, Yamada, Masayoshi, Sakamoto, Taku, Kanemitsu, Yukihide, Mizutani, Sayaka, Soga, Tomoyoshi, Saito, Yutaka, Shibata, Tatsuhiro, Fukuda, Shinji, Yachida, Shinichi, Yamada, Takuji“…We developed methods to estimate postoperative CRC risk based on the gut microbiome and metabolomic compositions using a random forest machine-learning algorithm that classifies large adenoma or early-stage CRC and healthy controls from publicly available data sets. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto