Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36741por Simpson, Garrett, Jin, William, Spieler, Benjamin, Portelance, Lorraine, Mellon, Eric, Kwon, Deukwoo, Ford, John C., Dogan, Nesrin“…Delta-radiomics texture features were calculated after delivery of 20 Gy BED (BED20 features) and 40 Gy BED (BED40 features). A random forest (RF) model was constructed using BED20 and then BED40 features to predict binary outcome. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36742por Hou, Yunqi, Chen, Zhen, Wang, Liping, Deng, Yingxin, Liu, Genglong, Zhou, Yongfen, Shi, Haiqin, Shi, Xiangqun, Jiang, Qianhua“…METHODS: Three epilepsy datasets (GSE16969, GSE32534 and GSE143272) were screened to obtain differentially expressed immune-related genes (DEIRGs). Random forest (RF) and protein–protein interaction (PPI) network were constructed to identify core genes. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36743Prediction of Early Alzheimer Disease by Hippocampal Volume Changes under Machine Learning Algorithm“…Besides, the established support vector machine (SVM), decision tree (DT), and random forest (RF) prediction models were used to predict e-MCI. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36744por Lin, Huawei, Liu, HuanHuan, Dai, Yaling, Yin, Xiaolong, Li, Zuanfang, Yang, Lei, Tao, Jing, Liu, Weilin, Chen, Lidian“…Standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated to generate a forest plot. In addition, subgroup analysis, moderation analysis, and regression analysis were performed to explore the possible adjustment factors. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36745por Andini, Rita, Rahmi, Erdiansyah, Mardiana, Rasnovi, Saida, Martunis, Moulana, Ryan“…Pongo pygmaeus, Pongo tapanuliensis and Pongo abelii are the three most representative species, in this study, here we discussed the latter. Sumatran forests are generally suffering from deforestation with rates ranging from 3.74% to 49.85% between 2000 and 2012. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36746por Fahmy, Omar, Ahmed, Osama A. A., Khairul-Asri, Mohd Ghani, Alhakamy, Nabil A., Alharbi, Waleed S., Fahmy, Usama A., El-Moselhy, Mohamed A., Fresta, Claudia G., Caruso, Giuseppe, Caraci, Filippo“…The software RevMan 5.4 was used to run the quantitative analysis and forest plots, while the Cochrane tool was employed for risk of bias assessment. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36747por Stadlbauer, Andreas, Marhold, Franz, Oberndorfer, Stefan, Heinz, Gertraud, Buchfelder, Michael, Kinfe, Thomas M., Meyer-Bäse, Anke“…Adaptive boosting and random forest in combination with advMRI and phyMRI data were superior to human reading in accuracy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC (0.886 vs. 0.813), and classification error (5 vs. 6). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36748por Alim-Marvasti, Ali, Romagnoli, Gloria, Dahele, Karan, Modarres, Hadi, Pérez-García, Fernando, Sparks, Rachel, Ourselin, Sébastien, Clarkson, Matthew J., Chowdhury, Fahmida, Diehl, Beate, Duncan, John S.“…Using this data set, we describe the probabilistic landscape of semiological localizing values as forest plots at the resolution of seven major brain regions: temporal, frontal, cingulate, parietal, occipital, insula, and hypothalamus, and five temporal subregions. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36749por Shiradkar, Rakesh, Ghose, Soumya, Mahran, Amr, Li, Lin, Hubbard, Isaac, Fu, Pingfu, Tirumani, Sree Harsha, Ponsky, Lee, Purysko, Andrei, Madabhushi, Anant“…A 3D shape atlas-based approach was adopted to derive prostate shape distension descriptors from T2WI, and these descriptors were used to train a random forest classifier (C(S) ) to predict BCR. Texture radiomics was derived within PCa regions of interest from T2WI and ADC maps, and another machine learning classifier (C(R) ) was trained for BCR. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36750por Krishnasamy, Sathya, Sheikh, Daniya, Ali, T’shura, Clemons, Victoria, Furmanek, Stephen, Mohamed Fawzy Abdelhaleem, Ahmed Abdelhaleem, Salunkhe, Vidyulata, Akbar, Usman Ali, Chlebowy, Diane, Ramirez, Julio, Arnold, ForestEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36751por Zhao, Hongyue, Su, Yexin, Wang, Mengjiao, Lyu, Zhehao, Xu, Peng, Jiao, Yuying, Zhang, Linhan, Han, Wei, Tian, Lin, Fu, Peng“…RESULTS: Boruta algorithm selected the optimal subset consisting of 13 features, including two clinical features, two laboratory indicators, and nine PEF/CT radiomic features. The Random Forest (RF) model and Support Vector Machine (SVM) model in the training group showed the best performance. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36752“…SIMPLE SUMMARY: Seed dispersal by frugivores is critical to forest regeneration. However, the Tibetan macaque’s seed dispersal function and the effect of seed physical characteristics on seed dispersal effectiveness need to be confirmed. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36753por Bhattacharyya, Anirban, Sheikhalishahi, Seyedmostafa, Torbic, Heather, Yeung, Wesley, Wang, Tiffany, Birst, Jennifer, Duggal, Abhijit, Celi, Leo Anthony, Osmani, Venet“…We evaluate our models based on stratified repeated cross-validation using 3 algorithms, namely Logistic Regression, Random Forest, and Bidirectional Long Short-Term Memory (BiLSTM). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36754por Wang, Changjun, Lin, Yan, Zhu, Hanjiang, Zhou, Yidong, Mao, Feng, Huang, Xin, Sun, Qiang, Li, Chenggang“…Pooled results were presented as L’Abbé plot and forest plot. Funnel plot and Egger’s test were employed for evaluation of publication bias. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36755“…We sought to evaluate postoperative complications, and results were expressed as odds ratio (OR) with 95% confidence interval (CI). Forest plots, sensitivity analysis, funnel plots, Egger’s test, and risk bias analysis were also performed on the included articles by using the Newcastle-Ottawa scale (NOS). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36756por Xia, Ming, Jin, Chenyu, Cao, Shuang, Pei, Bei, Wang, Jie, Xu, Tianyi, Jiang, Hong“…Six different advanced machine-learning models, including logistics regression (LOG), random forest (RF), K-nearest neighbors (KNN), support-vector machine (SVM), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM), were introduced for modelling. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36757por Lopes, Bruno A., Poubel, Caroline Pires, Teixeira, Cristiane Esteves, Caye-Eude, Aurélie, Cavé, Hélène, Meyer, Claus, Marschalek, Rolf, Boroni, Mariana, Emerenciano, Mariana“…Here we use a machine learning model to unravel the most appropriate markers for prediction of KMT2A-r in various types of acute leukemia. A Random Forest and LightGBM classifier was trained to predict KMT2A-r in patients with acute leukemia. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36758por Sheppard, Forest, Mack, Joseph D., Falank, Carolyne, Morse, Bryan C, Cullinane, Daniel C, Rappold, Joseph F, Ontengco, Julianne, Ciraulo, DavidEnlace del recurso
Publicado 2022
Enlace del recurso
Online Artículo Texto -
36759por Ezuma, Chimere O., Lu, Yining, Pareek, Ayoosh, Wilbur, Ryan, Krych, Aaron J., Forsythe, Brian, Camp, Christopher L.“…Models were generated using random forest, extreme gradient boosting, adaptive boosting, or elastic net penalized logistic regression, and an additional model was produced as a weighted ensemble of the 4 final algorithms. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36760por Fan, Yanxiao, Cheng, Zhuo, Zhang, Qing, Xiong, Yong, Li, Bingcong, Lu, Xiaoping, He, Liu, Jiang, Xia, Tan, Qi, Long, Chunlin“…In turn, for the sustainable use of plum resources, the Bai people positively manage local forests through a series of measures to protect the diversity of plum resources and related plant communities.…”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto