Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36781“…Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36782por Song, Yuebo, Jia, Qiuyang, Guan, Xiaorui, Kazuo, Sugimoto, Liu, Jia, Duan, Weisong, Feng, Luda, Zhang, Chi, Gao, Ying“…Certainty of evidence was assessed as per the GRADE criteria. Forest plots were constructed to assess the effect size and corresponding 95% CIs using fixed-effect models, and random-effect models were employed when required. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36783por Ory, Jesse, Tradewell, Michael B., Blankstein, Udi, Lima, Thiago F., Nackeeran, Sirpi, Gonzalez, Daniel C., Nwefo, Elie, Moryousef, Joseph, Madhusoodanan, Vinayak, Lau, Susan, Jarvi, Keith, Ramasamy, Ranjith“…The data from Miami were used to create a random forest model for predicting upgrade in sperm concentration. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36784“…Then, eight signature genes were determined by the machine learning method of support vector machine-recursive feature elimination (SVM-RFE), random forest (RF), and artificial neural network (ANN), comprising LATS1, EHF, DUSP16, ADCK5, PATZ1, DEK, MAP2K1, and ETS2, which were also validated in the testing gene set (GSE106602). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36785“…The three groups corresponded to the Eurasian forest subkingdom, Asian desert flora subkingdom, and Sino‐Japanese floristic regions, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36786por Chen, Yingjie, Huang, Wei, Liu, Qin, Wang, Qingbing, Wang, Ziyin, Wu, Zhiyuan, Ding, Xiaoyi, Wang, Zhongmin“…Wilson score, Random Forest, logistic regression, and Pearson’s chi-square test with bootstrap aggregation were performed for determining the perioperative risk factors for recurrence. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36787por Jia, Weili, Yao, Qianyun, Wang, Yanfang, Mao, Zhenzhen, Zhang, Tianchen, Li, Jianhui, Nie, Ye, Lei, Xinjun, Shi, Wen, Song, Wenjie“…Gene set enrichment analysis (GSEA) was used to explore the signaling pathways affected by these differentially expressed genes. The random forest algorithm was used to identify genes with the highest correlation with the iTLS in the training set. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36788por Huang, Yuanqi, Huang, Shengqi, Wang, Yukun, Li, Yurong, Gui, Yuheng, Huang, Caihua“…Ultimately, the decision scores from each submodel were fused using the random forest (RF) to generate a lower extremity non-contact injury risk prediction model at the decision-level. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36789
-
36790
-
36791por Sinclair, Benjamin, Cahill, Varduhi, Seah, Jarrel, Kitchen, Andy, Vivash, Lucy E., Chen, Zhibin, Malpas, Charles B., O'Shea, Marie F., Desmond, Patricia M., Hicks, Rodney J., Morokoff, Andrew P., King, James A., Fabinyi, Gavin C., Kaye, Andrew H., Kwan, Patrick, Berkovic, Samuel F., Law, Meng, O'Brien, Terence J.“…These measures were used as predictor variables in logistic regression, support vector machines, random forests and artificial neural networks. RESULTS: In the study cohort, 24 of 82 (28.3%) who underwent an ATLR for drug‐resistant MTLE did not achieve Engel Class I (i.e., free of disabling seizures) outcome at a minimum of 2 years of postoperative follow‐up. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36792por Feng, Yan, Xu, Zhihan, Zhang, Lin, Zhang, Yaping, Xu, Hao, Zhuang, Xiaozhong, Zhang, Hao, Xie, Xueqian“…By accumulating and weighting the most contributive features to functional ischemia (CT-FFR ≤ 0.8) the Rad-signature was established using Boruta integrating with a random forest algorithm. Another 45 patients who underwent CCTA and invasive FFR were included to assure the performance of Rad-signature. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36793por Juhász, Márk Félix, Sipos, Zoltán, Ocskay, Klementina, Hegyi, Péter, Nagy, Anikó, Párniczky, Andrea“…We performed random-effects meta-analysis of on-admission differences between mild and M/SPAP in laboratory parameters, etiology, demographic factors, etc. calculating risk ratios (RR) or mean differences (MD) with 95% confidence intervals (CI) and created forest plots. For the meta-analysis of predictive score systems, we generated hierarchical summary receiver operating characteristic curves using a bivariate model. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36794por Lau, Lawrence Chun Man, Chui, Elvis Chun Sing, Man, Gene Chi Wai, Xin, Ye, Ho, Kevin Ki Wai, Mak, Kyle Ka Kwan, Ong, Michael Tim Yun, Law, Sheung Wai, Cheung, Wing Hoi, Yung, Patrick Shu Hang“…Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36795por Xia, Wei-Li, Zhao, Xiao-Hui, Guo, Yuan-, Cao, Guang-Shao, Wu, Gang, Fan, Wei-Jun, Yao, Quan-Jun, Xu, Shi-Jun, Guo, Chen-Yang, Hu, Hong-Tao, Li, Hai-Liang“…Propensity score matching (PSM) analysis was used to reduce patient selection bias, and the random survival forest (RF) model was employed to explore prognostic factors affecting patient survival. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36796“…The HCM-related m6A regulators were selected using support vector machine recursive feature elimination and random forest algorithm. A significant gene signature was then established using least absolute shrinkage and selection operator and then verified by GSE130036. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36797por Li, Jia, Qiao, Hao, Wu, Fei, Sun, Shiyu, Feng, Cong, Li, Chaofan, Yan, Wanjun, Lv, Wei, Wu, Huizi, Liu, Mengjie, Chen, Xi, Liu, Xuan, Wang, Weiwei, Cai, Yifan, Zhang, Yu, Zhou, Zhangjian, Zhang, Yinbin, Zhang, Shuqun“…Univariate Cox regression, random survival forest (RSF), and stepwise multivariate Cox regression analyses were performed to construct the hypoxia-lactate metabolism-related prognostic model (HLMRPM). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36798“…The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36799por Zhu, Haitao, Yin, Changqing, Schoepf, U. Joseph, Wang, Dongqing, Zhou, Changsheng, Lu, Guang Ming, Zhang, Long Jiang“…Four ML models (LR, random forest, support vector machine, and k-nearest neighbor) and the corresponding feature ranks were conducted. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36800por Briggs, Emma, de Kamps, Marc, Hamilton, Willie, Johnson, Owen, McInerney, Ciarán D., Neal, Richard D.“…We used a primary care electronic health record dataset derived from the UK General Practice Research Database (7471 cases; 32,877 controls) and developed five probabilistic machine learning classifiers: Support Vector Machine, Random Forest, Logistic Regression, Naïve Bayes, and Extreme Gradient Boosted Decision Trees. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto