Mostrando 36,781 - 36,800 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.44s Limitar resultados
  1. 36781
    “…Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36782
    “…Certainty of evidence was assessed as per the GRADE criteria. Forest plots were constructed to assess the effect size and corresponding 95% CIs using fixed-effect models, and random-effect models were employed when required. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36783
  4. 36784
    “…Then, eight signature genes were determined by the machine learning method of support vector machine-recursive feature elimination (SVM-RFE), random forest (RF), and artificial neural network (ANN), comprising LATS1, EHF, DUSP16, ADCK5, PATZ1, DEK, MAP2K1, and ETS2, which were also validated in the testing gene set (GSE106602). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36785
    “…The three groups corresponded to the Eurasian forest subkingdom, Asian desert flora subkingdom, and Sino‐Japanese floristic regions, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36786
    “…Wilson score, Random Forest, logistic regression, and Pearson’s chi-square test with bootstrap aggregation were performed for determining the perioperative risk factors for recurrence. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36787
    “…Gene set enrichment analysis (GSEA) was used to explore the signaling pathways affected by these differentially expressed genes. The random forest algorithm was used to identify genes with the highest correlation with the iTLS in the training set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36788
    “…Ultimately, the decision scores from each submodel were fused using the random forest (RF) to generate a lower extremity non-contact injury risk prediction model at the decision-level. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36789
  10. 36790
  11. 36791
    “…These measures were used as predictor variables in logistic regression, support vector machines, random forests and artificial neural networks. RESULTS: In the study cohort, 24 of 82 (28.3%) who underwent an ATLR for drug‐resistant MTLE did not achieve Engel Class I (i.e., free of disabling seizures) outcome at a minimum of 2 years of postoperative follow‐up. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 36792
    “…By accumulating and weighting the most contributive features to functional ischemia (CT-FFR ≤ 0.8) the Rad-signature was established using Boruta integrating with a random forest algorithm. Another 45 patients who underwent CCTA and invasive FFR were included to assure the performance of Rad-signature. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36793
    “…We performed random-effects meta-analysis of on-admission differences between mild and M/SPAP in laboratory parameters, etiology, demographic factors, etc. calculating risk ratios (RR) or mean differences (MD) with 95% confidence intervals (CI) and created forest plots. For the meta-analysis of predictive score systems, we generated hierarchical summary receiver operating characteristic curves using a bivariate model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36794
    “…Based on a dataset with TKA patient clinical parameters, another system was then created for developing the clinical-information-based machine learning model with random forest classifier. In addition, the Xception Model was pre-trained on the ImageNet database with python and TensorFlow deep learning library for the prediction of loosening. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36795
    “…Propensity score matching (PSM) analysis was used to reduce patient selection bias, and the random survival forest (RF) model was employed to explore prognostic factors affecting patient survival. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36796
    por Li, Yao, Zhang, Wei, Dai, Yan, Chen, Keping
    Publicado 2022
    “…The HCM-related m6A regulators were selected using support vector machine recursive feature elimination and random forest algorithm. A significant gene signature was then established using least absolute shrinkage and selection operator and then verified by GSE130036. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36797
  18. 36798
    “…The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36799
  20. 36800
    “…We used a primary care electronic health record dataset derived from the UK General Practice Research Database (7471 cases; 32,877 controls) and developed five probabilistic machine learning classifiers: Support Vector Machine, Random Forest, Logistic Regression, Naïve Bayes, and Extreme Gradient Boosted Decision Trees. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS