Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36841por Yuan, Baowen, Qin, Hao, Zhang, Jingyao, Zhang, Min, Yang, Yunkai, Teng, Xu, Yu, Hefen, Huang, Wei, Wang, Yan“…Differentially expressed genes were verified and screened by random forest and cox regression analysis by comparing different m(6)A modification patterns. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36842“…There machine learning methods (LASSO logistic regression, random forest (RF), support vector machine-recursive feature elimination (SVM-RFE)) were used to screen out important genes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36843por Zhang, Ling, Chen, Siqi, Chen, Zhuowang, Yin, Wenjun, Fu, Wenjuan, He, Fang, Pan, Zhen, Yi, Guilin, Tan, Xiaodong“…Descriptive statistics, univariate analyses and multivariate analyses were used. Forest plot and nomograms were constructed for the visualization of predictive results. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36844por Désage, Anne-Laure, Tissot, Claire, Bayle-Bleuez, Sophie, Muron, Thierry, Deygas, Nadine, Grangeon-Vincent, Valérie, Monange, Brigitte, Torche, Fatah, Vercherin, Paul, Kaczmarek, David, Tiffet, Olivier, Forest, Fabien, Vergnon, Jean-Michel, Bouleftour, Wafa, Fournel, PierreEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36845por Shimpi, Neel, Glurich, Ingrid, Panny, Aloksagar, Hegde, Harshad, Scannapieco, Frank A., Acharya, Amit“…Performance of five algorithms were compared across the four subsets: Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests. Feature (input variables) selection and ten-fold cross validation was performed on all the datasets. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36846The Delineation and Ecological Connectivity of the Three Parallel Rivers Natural World Heritage Sitepor Li, Hui, Guo, Wanqi, Liu, Yan, Zhang, Qiman, Xu, Qing, Wang, Shuntao, Huang, Xue, Xu, Kexin, Wang, Junzhi, Huang, Yilin, Gao, Wei“…The resistances of the different land types and landscape heterogeneity to the ecological function of species migration between the core protected areas of the heritage site were, in descending order, those of the forest, shrubs and grass, water, unused land, cultivated land, and built-up land. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36847por Marquardt, André, Hartrampf, Philipp, Kollmannsberger, Philip, Solimando, Antonio G., Meierjohann, Svenja, Kübler, Hubert, Bargou, Ralf, Schilling, Bastian, Serfling, Sebastian E., Buck, Andreas, Werner, Rudolf A., Lapa, Constantin, Krebs, Markus“…However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database—representing n = 9242 specimens from 29 tumor entities. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36848“…Backpropagation artificial neural network (BP-ANN), random forest (RF), support vector machine (SVM), and naive Bayes classifier (NBC) were chosen as alternative algorithms. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36849por Song, Wenzhu, Liu, Yanfeng, Qiu, Lixia, Qing, Jianbo, Li, Aizhong, Zhao, Yan, Li, Yafeng, Li, Rongshan, Zhou, Xiaoshuang“…Next, Bagging, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were employed for classification of ACR outcomes and MCR outcomes, respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36850“…Also, four algorithms, namely, random forest (RF), Boruta algorithm, logical regression of the selection operator (LASSO), and support vector machine-recursive feature elimination (SVM-RFE), were used to identify the candidate genes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36851por Semsar-Kazerooni, Koorosh, Richardson, Keith, Forest, Véronique-Isabelle, Mlynarek, Alex, Hier, Michael P., Sadeghi, Nader, Mascarella, Marco. A.Enlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36852“…All data was divided into the training set (n = 1,465) and the testing set (n = 628). The random survival forest model was constructed in the training set and validated in the testing set. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36853por Sousa, Massaine Bandeira e, Filho, Juraci Souza Sampaio, de Andrade, Luciano Rogerio Braatz, de Oliveira, Eder Jorge“…Four classification models were assessed for waxy cassava genotype identification: k-nearest neighbor algorithm (KNN), C5.0 decision tree (CDT), parallel random forest (parRF), and eXtreme Gradient Boosting (XGB). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36854por Huang, Hung-Hsiang, Hsieh, Shang-Ju, Chen, Ming-Shu, Jhou, Mao-Jhen, Liu, Tzu-Chi, Shen, Hsiang-Li, Yang, Chih-Te, Hung, Chung-Chih, Yu, Ya-Yen, Lu, Chi-Jie“…This study proposed a framework using five machine learning (ML) predictive algorithms—random forest, stochastic gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and extreme gradient boosting—to identify the major risk factors affecting male sperm count based on a major health screening database in Taiwan. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36855por Zhao, Songyun, Chi, Hao, Yang, Qian, Chen, Shi, Wu, Chenxi, Lai, Guichuan, Xu, Ke, Su, Ke, Luo, Honghao, Peng, Gaoge, Xia, Zhijia, Cheng, Chao, Lu, Peihua“…LASSO regression and random forest algorithms were then used to screen the key NFRGs. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36856por Xie, Jiaxing, Chen, Yufeng, Yu, Zhenbang, Wang, Jiaxin, Liang, Gaotian, Gao, Peng, Sun, Daozong, Wang, Weixing, Shu, Zuna, Yin, Dongxiao, Li, Jun“…Support vector regression, random forest regression, and k-nearest neighbor regression (KNR) Sc prediction models were constructed, which were based on single and combined variables. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36857por Sani, Shuaibu Nazifi, Zhou, Wei, Ismail, Balarabe B., Zhang, Yongkui, Chen, Zhijun, Zhang, Binjie, Bao, Changqian, Zhang, Houde, Wang, Xiaozhi“…The discriminatory accuracy of identified VOCs was assessed using subject work characterization and a random forest risk prediction model. (3) Results: the proposed technique has good performance compared with existing approaches, the differences between the exhaled VOCs of the early lung cancer patients before operation, three to seven days after the operation, as well as four to six weeks after operation under fasting and 1 h after the meal were compared with the healthy controls. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36858“…Of machine learning models tested, the gradient-boosted tree model gave global optimal results, with the Youden index of J = 0.7, sens = 0.89, and spc = 0.81 achieved for the given set of conditions. Random forest models also performed well, achieving J > 0.63, with sens = 0.83 and spc = 0.81. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36859por Gupta, Nikhil, Yadav, Deependra Kumar, Gautam, Sonam, Kumar, Ashish, Kumar, Dinesh, Prasad, Narayan“…The serum metabolic profiles were compared using various multivariate statistical analysis tools available on MetaboAnalyst (freely available web-based software) such as partial least-squares discriminant analysis (PLS-DA) and random forest (a machine learning) classification method. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36860por Mandal, Nandita, Adak, Sujan, Das, Deb K., Sahoo, Rabi N., Mukherjee, Joydeep, Kumar, Andy, Chinnusamy, Viswanathan, Das, Bappa, Mukhopadhyay, Arkadeb, Rajashekara, Hosahatti, Gakhar, Shalini“…Thereafter, multivariate models like support vector machine regression (SVM), partial least squares (PLS), random forest (RF), and multivariate adaptive regression spline (MARS) were also used to estimate blast severity. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto