Mostrando 36,841 - 36,860 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 1.56s Limitar resultados
  1. 36841
    “…Differentially expressed genes were verified and screened by random forest and cox regression analysis by comparing different m(6)A modification patterns. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36842
    “…There machine learning methods (LASSO logistic regression, random forest (RF), support vector machine-recursive feature elimination (SVM-RFE)) were used to screen out important genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36843
    “…Descriptive statistics, univariate analyses and multivariate analyses were used. Forest plot and nomograms were constructed for the visualization of predictive results. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36844
  5. 36845
    “…Performance of five algorithms were compared across the four subsets: Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests. Feature (input variables) selection and ten-fold cross validation was performed on all the datasets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36846
    “…The resistances of the different land types and landscape heterogeneity to the ecological function of species migration between the core protected areas of the heritage site were, in descending order, those of the forest, shrubs and grass, water, unused land, cultivated land, and built-up land. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36847
    “…However, it is unclear whether CXCR4 and FAP positivity mark distinct microenvironments, especially in solid tumors. (2) Methods: Using Random Forest (RF) analysis, we searched for entity-independent mRNA and microRNA signatures related to CXCR4 and FAP overexpression in our pan-cancer cohort from The Cancer Genome Atlas (TCGA) database—representing n = 9242 specimens from 29 tumor entities. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36848
    por Tang, Jun, Fang, Yu, Xu, Zhe
    Publicado 2023
    “…Backpropagation artificial neural network (BP-ANN), random forest (RF), support vector machine (SVM), and naive Bayes classifier (NBC) were chosen as alternative algorithms. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36849
    “…Next, Bagging, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were employed for classification of ACR outcomes and MCR outcomes, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 36850
    por Bian, Rutao, Xu, Xuegong, Li, Weiyu
    Publicado 2023
    “…Also, four algorithms, namely, random forest (RF), Boruta algorithm, logical regression of the selection operator (LASSO), and support vector machine-recursive feature elimination (SVM-RFE), were used to identify the candidate genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 36851
  12. 36852
    “…All data was divided into the training set (n = 1,465) and the testing set (n = 628). The random survival forest model was constructed in the training set and validated in the testing set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36853
    “…Four classification models were assessed for waxy cassava genotype identification: k-nearest neighbor algorithm (KNN), C5.0 decision tree (CDT), parallel random forest (parRF), and eXtreme Gradient Boosting (XGB). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36854
    “…This study proposed a framework using five machine learning (ML) predictive algorithms—random forest, stochastic gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and extreme gradient boosting—to identify the major risk factors affecting male sperm count based on a major health screening database in Taiwan. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36855
  16. 36856
    “…Support vector regression, random forest regression, and k-nearest neighbor regression (KNR) Sc prediction models were constructed, which were based on single and combined variables. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36857
    “…The discriminatory accuracy of identified VOCs was assessed using subject work characterization and a random forest risk prediction model. (3) Results: the proposed technique has good performance compared with existing approaches, the differences between the exhaled VOCs of the early lung cancer patients before operation, three to seven days after the operation, as well as four to six weeks after operation under fasting and 1 h after the meal were compared with the healthy controls. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36858
    “…Of machine learning models tested, the gradient-boosted tree model gave global optimal results, with the Youden index of J = 0.7, sens = 0.89, and spc = 0.81 achieved for the given set of conditions. Random forest models also performed well, achieving J > 0.63, with sens = 0.83 and spc = 0.81. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36859
    “…The serum metabolic profiles were compared using various multivariate statistical analysis tools available on MetaboAnalyst (freely available web-based software) such as partial least-squares discriminant analysis (PLS-DA) and random forest (a machine learning) classification method. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36860
    “…Thereafter, multivariate models like support vector machine regression (SVM), partial least squares (PLS), random forest (RF), and multivariate adaptive regression spline (MARS) were also used to estimate blast severity. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS