Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36861“…We developed a machine learning (ML) based forecasting system, which consists of two components, ML1 (random forecast classifiers and multiple linear regression models) and ML2 (two-phase random forest regression model). Our previous study showed that the ML system provides reliable forecasts of O(3) at a single monitoring site in Kennewick, WA. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36862por Crous, P.W., Osieck, E.R., Jurjević, Ž., Boers, J., van Iperen, A.L., Starink-Willemse, M., Dima, B., Balashov, S., Bulgakov, T.S., Johnston, P.R., Morozova, O.V., Pinruan, U., Sommai, S., Alvarado, P., Decock, C.A., Lebel, T., McMullan-Fisher, S., Moreno, G., Shivas, R.G., Zhao, L., Abdollahzadeh, J., Abrinbana, M., Ageev, D.V., Akhmetova, G., Alexandrova, A.V., Altés, A., Amaral, A.G.G., Angelini, C., Antonín, V., Arenas, F., Asselman, P., Badali, F., Baghela, A., Bañares, A., Barreto, R.W., Baseia, I.G., Bellanger, J.-M., Berraf-Tebbal, A., Biketova, A.Yu., Bukharova, N.V., Burgess, T.I., Cabero, J., Câmara, M.P.S., Cano-Lira, J.F., Ceryngier, P., Chávez, R., Cowan, D.A., de Lima, A.F., Oliveira, R.L., Denman, S., Dang, Q.N., Dovana, F., Duarte, I.G., Eichmeier, A., Erhard, A., Esteve-Raventós, F., Fellin, A., Ferisin, G., Ferreira, R.J., Ferrer, A., Finy, P., Gaya, E., Geering, A.D.W., Gil-Durán, C., Glässnerová, K., Glushakova, A.M., Gramaje, D., Guard, F.E., Guarnizo, A.L., Haelewaters, D., Halling, R.E., Hill, R., Hirooka, Y., Hubka, V., Iliushin, V.A., Ivanova, D.D., Ivanushkina, N.E., Jangsantear, P., Justo, A., Kachalkin, A.V., Kato, S., Khamsuntorn, P., Kirtsideli, I.Y., Knapp, D.G., Kochkina, G.A., Koukol, O., Kovács, G.M., Kruse, J., Kumar, T.K.A., Kušan, I., Læssøe, T., Larsson, E., Lebeuf, R., Levicán, G., Loizides, M., Marinho, P., Luangsa-ard, J.J., Lukina, E.G., Magaña-Dueñas, V., Maggs-Kölling, G., Malysheva, E.F., Malysheva, V.F., Martín, B., Martín, M.P., Matočec, N., McTaggart, A.R., Mehrabi-Koushki, M., Mešić, A., Miller, A.N., Mironova, P., Moreau, P.-A., Morte, A., Müller, K., Nagy, L.G., Nanu, S., Navarro-Ródenas, A., Nel, W.J., Nguyen, T.H., Nóbrega, T.F., Noordeloos, M.E., Olariaga, I., Overton, B.E., Ozerskaya, S.M., Palani, P., Pancorbo, F., Papp, V., Pawłowska, J., Pham, T.Q., Phosri, C., Popov, E.S., Portugal, A., Pošta, A., Reschke, K., Reul, M., Ricci, G.M., Rodríguez, A., Romanowski, J., Ruchikachorn, N., Saar, I., Safi, A., Sakolrak, B., Salzmann, F., Sandoval-Denis, M., Sangwichein, E., Sanhueza, L., Sato, T., Sastoque, A., Senn-Irlet, B., Shibata, A., Siepe, K., Somrithipol, S., Spetik, M., Sridhar, P., Stchigel, A.M., Stuskova, K., Suwannasai, N., Tan, Y.P., Thangavel, R., Tiago, I., Tiwari, S., Tkalčec, Z., Tomashevskaya, M.A., Tonegawa, C., Tran, H.X., Tran, N.T., Trovão, J., Trubitsyn, V.E., Van Wyk, J., Vieira, W.A.S., Vila, J., Visagie, C.M., Vizzini, A., Volobuev, S.V., Vu, D.T., Wangsawat, N., Yaguchi, T., Ercole, E., Ferreira, B.W., de Souza, A.P., Vieira, B.S., Groenewald, J.Z.“…Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36863por Li, Xiaoping, Lin, Zhiquan, Yu, Qihe, Qiu, Chaoran, Lai, Chan, Huang, Hui, Zhang, Yiwen, Zhang, Weibin, Zhu, Jintao, Huang, Xin, Li, Weiwen“…The rest non-pCR cases were served as the test set. Random forest (RF), support vector machine (SVM), and fully connected neural network (FCNN) were applied to establish a 1-dimensional (1D) model based on mRNA data. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36864por Qin, Li, Liang, Zhikun, Xie, Jingwen, Ye, Guozeng, Guan, Pengcheng, Huang, Yaoyao, Li, Xiaoyan“…Six ML algorithms, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), weighted support vector machine (SVM), a multilayer perception (MLP) network, and a long short-term memory (LSTM) network, were applied for model fitting. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36865por Haberfehlner, Helga, van de Ven, Shankara S., van der Burg, Sven A., Huber, Florian, Georgievska, Sonja, Aleo, Ignazio, Harlaar, Jaap, Bonouvrié, Laura A., van der Krogt, Marjolein M., Buizer, Annemieke I.“…These features were fed into a Random Forest Regressor to train a model to predict the clinical scores. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36866por Zhang, Junjie, Hao, Ligang, Qi, MingWei, Xu, Qian, Zhang, Ning, Feng, Hui, Shi, Gaofeng“…Three radiomics prediction models were applied: logistic regression (LR), support vector machine (SVM) and random forest (RF). The best performing model was adopted, and the radiomics score (Radscore) was then computed. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36867por Matasov, Victor, Vasenev, Viacheslav, Matasov, Dmitrii, Dvornikov, Yury, Filyushkina, Anna, Bubalo, Martina, Nakhaev, Magomed, Konstantinova, Anastasia“…The selected parks represent two different types: a centrally located park with much infrastructure and open landscapes (Gorky Park) and parks located at the outskirts of the city center with a more forested landscape and little infrastructure (Timiryazevski and Sokolniki parks). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36868“…A total of 841 patients who underwent hepatectomy in 10 trials were included in the comparative analysis between low central venous pressure (CVP) and control groups. The forest plots showed a low operative bleeding volume [(mean difference (MD): -409.75 mL, 95% confidence intervals (CI) -616.56 to -202.94, P < 0.001], reduced blood transfusion rate [risk ratio (RR): 0.47, 95% CI 0.34 to 0.65, P < 0.001], shortened operating time (MD: -13.42 min, 95% CI -22.59 to -4.26, P = 0.004), and fewer postoperative complications (RR: 0.76, 95% CI 0.58 to 0.99, P = 0.04) in the low CVP group than in the control group. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36869por Tian, HuaKai, Liu, Zitao, Liu, Jiang, Zong, Zhen, Chen, YanMei, Zhang, Zuo, Li, Hui“…We applied seven ML algorithms: logistic regression, random forest (RF), LASSO, support vector machine, k-Nearest Neighbor, Naive Bayesian Model, Artificial Neural Network. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36870iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers“…We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36871por Zheng, Peng-Fei, Hong, Xiu-Qin, Liu, Zheng-Yu, Zheng, Zhao-Fen, Liu, Peng, Chen, Lu-Zhu“…A total of seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15 and YTHDF3, were identified using a random forest classifier. A diagnostic nomogram based on these seven key m6A regulators could effectively distinguish patients with ICM from healthy subjects. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36872por Cáceres, Alejandro, Carreras-Gallo, Natàlia, Andrusaityte, Sandra, Bustamante, Mariona, Carracedo, Ángel, Chatzi, Leda, Dwaraka, Varun B., Grazuleviciene, Regina, Gutzkow, Kristine Bjerve, Lepeule, Johanna, Maitre, Léa, Mendez, Tavis L., Nieuwenhuijsen, Mark, Slama, Remy, Smith, Ryan, Stratakis, Nikos, Thomsen, Cathrine, Urquiza, Jose, Went, Hannah, Wright, John, Yang, Tiffany, Casas, Maribel, Vrijheid, Martine, González, Juan R.“…We applied causal random forest to classify individuals into two environments: E1 and E0. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36873por Mehrabani-Zeinabad, Kamran, Feizi, Awat, Sadeghi, Masoumeh, Roohafza, Hamidreza, Talaei, Mohammad, Sarrafzadegan, Nizal“…In the other used classification algorithms, variables with more than 10% missing values were excluded, and MissForest imputes the missing values of the remaining 49 variables. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36874por Bush, Tony, Bartington, Suzanne, Pope, Francis D., Singh, Ajit, Thomas, G. Neil, Stacey, Brian, Economides, George, Anderson, Ruth, Cole, Stuart, Abreu, Pedro, Leach, Felix C.P.“…The aim of this study was to utilise high-spatial resolution air quality information utilising data arising from a validated (using a random forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM(10), PM(2.5)) from January 2020 to September 2021. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36875“…Then, the Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Artificial Neural Network (ANN), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) methods were used to predict patients' hospital mortality with traumatic injuries. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36876por Yin, Jing-Xian, Agbana, Yannick Luther, Sun, Zhi-Shan, Fei, Si-Wei, Zhao, Han-Qing, Zhou, Xiao-Nong, Chen, Jun-Hu, Kassegne, Kokouvi“…The pooled estimate of IL-6 revealed a mean value of 20.92 pg/ml (95% CI = 9.30–32.54 pg/ml, I(2) = 100%, P < 0.01) for long COVID-19 patients. The forest plot showed high levels of IL-6 for long COVID-19 compared with healthy controls (mean difference = 9.75 pg/ml, 95% CI = 5.75–13.75 pg/ml, I(2) = 100%, P < 0.00001) and PASC category (mean difference = 3.32 pg/ml, 95% CI = 0.22–6.42 pg/ml, I(2) = 88%, P = 0.04). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36877por Jafarlou, Salar, Lai, Jocelyn, Azimi, Iman, Mousavi, Zahra, Labbaf, Sina, Jain, Ramesh C, Dutt, Nikil, Borelli, Jessica L, Rahmani, Amir“…For predictive modeling, we assessed the performance of different machine learning models, including random forests (RFs), support vector machines (SVMs), multilayer perceptron (MLP), and K-nearest neighbor (KNN). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36878por Ahmed, Arfan, Aziz, Sarah, Abd-alrazaq, Alaa, Farooq, Faisal, Househ, Mowafa, Sheikh, Javaid“…It was observed that classical ML approaches were deployed by half of the studies, the most popular being ensemble-boosted trees (random forest). The most common evaluation metric used was Clarke grid error (n=7, 58%), followed by root mean square error (n=5, 42%). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36879por Chen, Jianghua, Li, Shilin, Zhu, Jing, Su, Wei, Jian, Congcong, Zhang, Jie, Wu, Jianhong, Wang, Tingting, Zhang, Weihua, Zeng, Fanwei, Chang, Shengjia, Jia, Lihua, Su, Jiang, Zhao, Yi, Wang, Jing, Zeng, Fanxin“…The disease groups, based on 28 joints and ESR (DAS28), were divided into DAS28L, DAS28M, and DAS28H groups. Three random forest models were constructed and verified with an external validation cohort of 93 subjects. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36880por Niu, Jiahe, Lu, Yonghao, Xu, Ruikun, Fang, Fang, Hong, Shikai, Huang, Lexin, Xue, Yajun, Fei, Jintao, Zhang, Xuegong, Zhou, Boda, Zhang, Ping, Jiang, Rui“…METHODS: Six machine learning models including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Trees (GBT), Extreme Gradient Boosting (XGB), and an ensemble of the five baseline models were developed to predict postoperative clinical outcomes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto