Mostrando 36,881 - 36,900 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.62s Limitar resultados
  1. 36881
    “…Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36882
    “…Hub DERBGs were screened using the least absolute shrinkage and selection operator (LASSO) regression analysis, as well as the random forest (RF) algorithm. Additionally, the diagnostic performance of RF and LASSO methods was evaluated using receiver operating characteristic (ROC) curves and single-gene gene set enrichment analysis (GSEA) was conducted to explore the potential molecular mechanisms involved with these Hub DERBGs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36883
    “…Four models intended for these types of data were tested: Cox elastic net, random survival forest, gradient boosted regression (GBM), and super learner. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36884
    “…METHODS: ASD patients and controls underwent full-body biplanar low-dose x-rays with 3D reconstruction of skeletal segment as well as 3DMA of gait and filled HRQoL questionnaires: SF-36 physical and mental components (PCS&MCS), Oswestry Disability Index (ODI), Beck's Depression Inventory (BDI), and visual analog scale (VAS) for pain. A random forest machine learning (ML) model was used to predict HRQoL outcomes based on three simulations: (1) radiographic, (2) kinematic, (3) both radiographic and kinematic parameters. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 36885
    “…For research question 2, among the classification models developed for predicting the stay duration of migrants, the random forest and gradient boosting tree models presented better results with area under the receiver operating characteristic curve values of 0.91 and 0.93, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36886
  7. 36887
    “…We compare the performance of four machine learning algorithms (stepwise selection, lasso, random forest, and neural networks) to predict missed health care visits during the first COVID-19 survey based on common patient characteristics available to most health care providers. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36888
    “…Odds ratio with a 95% confidence interval (CI) was presented using a forest plot. RESULTS: Ten studies were eligible for inclusion in this systematic review, of which five studies were eligible for inclusion in the meta-analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36889
  10. 36890
  11. 36891
  12. 36892
    por Morsy, Noha, Holiel, Ahmed A.
    Publicado 2023
    “…Results were presented as forest plots. RESULTS: The authors identified 1776 articles from the initial search. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 36893
    “…BACKGROUND: Ips typographus (European spruce bark beetle) is the most destructive pest of spruce forests in Europe. As for other animals, it has been proposed that the microbiome plays important roles in the biology of bark beetles. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36894
    “…For each of our two outcomes, we evaluated seven modelling approaches: four prediction models utilized logistic regression with different combinations of predictors to evaluate the relative contribution of each group of variables, and three prediction models utilized machine learning approaches - logistic regression with LASSO penalty, random forests (RF), and gradient boosting machine (GBM). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36895
    “…For the key module, we used Random forest (RF), support vector machines (SVM), Extreme Gradient Boosting (XGB), and generalized linear model (GLM) to construct diagnostic models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 36896
    “…The NRDEGs were used to construct a diagnostic model and were further screened using least absolute shrinkage selection operator (LASSO) regression and random forest (RF) analysis. The discriminatory capacity of the NRDEGs was evaluated using receiver operating characteristic (ROC) curves. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36897
    “…METHODS: CIBERSORT combined with weighted gene co-expression network analysis (WGCNA), non-negative matrix factorization (NMF), and random forest algorithms to screen the module associated with CD8(+) T cells, and key genes related to prognosis were selected out by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses to develop the novel immune risk score (NIRS). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36898
    “…Predictors of mortality were identified using Recursive Feature Elimination (RFE). Then, random forest, extreme gradient boosting (XGBoost), multilayer perceptron classifier, support vector classifier, and logistic regression were used to establish a prognosis prediction model for 7, 14, and 28 days after intensive care unit (ICU) admission, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36899
    “…In addition, we collected 16 samples from four nearby bamboo forests in Japan and performed SNP and insertion/deletion analyses using a genotyping by sequencing (GBS) method. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36900
    por Liu, Xiaoyan, Chen, Zhiyun, Ji, Yanqin
    Publicado 2023
    “…Based on the predictive factors, four supervised machine learning algorithms were respectively considered to build the predictive models: logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LGBM). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS