Mostrando 36,901 - 36,920 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.34s Limitar resultados
  1. 36901
    “…We developed two sets of case-identification algorithms: one based on a literature review and clinical input (predefined algorithms), and another using machine learning (ML) methods (logistic regression, classification and regression tree, random forest). Patient classifications based on these algorithms were compared and validated against the chart data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 36902
    “…A structured questionnaire survey was conducted via face-to-face interviews. Random forest and logistic regression analysis were used to demonstrate the effects of the explanatory variables on health seeking behaviors from predisposing, enabling and need variables. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 36903
    “…To illustrate these performance metrics, different modeling approaches for predicting treatment effect are applied to the data of the Diabetes Prevention Program: 1) a risk modelling approach with restricted cubic splines; 2) an effect modelling approach including penalized treatment interactions; and 3) the causal forest. RESULTS: As desired, performance metric values of “perturbed models” were consistently worse than those of the “optimal model” (E(avg)-for-benefit ≥ 0.043 versus 0.002, E(50)-for-benefit ≥ 0.032 versus 0.001, E(90)-for-benefit ≥ 0.084 versus 0.004, cross-entropy-for-benefit ≥ 0.765 versus 0.750, Brier-for-benefit ≥ 0.220 versus 0.218). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 36904
  5. 36905
    “…RESULTS: We compared 5 candidate machine learning methods and selected random forest as the ideal model with the best performance (accuracy: 0.726 for HC vs MCI, 0.929 for HC vs AD, and 0.815 for AD vs MCI). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 36906
    “…The predictive models were developed using eight ML algorithms including the J48 decision tree (J48), support vector machine (SVM), multi-layer perceptron (MLP), k-nearest neighbourhood (k-NN), Naïve Bayes (NB), logistic regression (LR), random forest (RF), and eXtreme gradient boosting (XGBoost). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 36907
    “…METHODS: Pharmacovariants from 1800 drug-related genes from 100 WES data files underwent (a) deep computational analysis by eight bioinformatic algorithms (overall containing 23 tools) and (b) random forest (RF) classifier as the machine learning (ML) approach separately. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 36908
    “…The score provided complementary prognostic information beyond conventional risk factors (C index: 0.78 vs 0.81; overall net reclassification improvement index [95% confidence interval]: 0.255 [0.204–0.299]; likelihood ratio test P < 0.001), and was identified as the most important predictor of mortality by the proportion of explainable log-likelihood ratio χ(2) statistics, the best subset analysis, as well as the random survival forest analysis in most types of VHD. The predictive performance of the score was also demonstrated in patients under conservative treatment, with normal left ventricular systolic function, or with primary VHD. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 36909
  10. 36910
  11. 36911
  12. 36912
  13. 36913
    “…Furthermore, we drew a forest plot for each outcome. We conducted a sensitivity analysis, data analysis, heterogeneity, and publication bias test. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 36914
    “…We also compare the usage of 4 statistical or machine learning models (Multiple Linear Regression, Random Forest, Gaussian Mixture Regression, and XGBoost) to correct low-cost sensors data, and find that XGBoost performs the best in testing (R(2): 0.97, 0.94, 0.96; mean absolute error: 0.56, 0.80, and 0.68 μg/m(3) for PurpleAir PA-II, Clarity Node-S, and Modulair-PM, respectively), but tree-based models do not perform well when correcting data outside the range of the colocation training. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 36915
  16. 36916
    “…PM(2.5) and five constituents were estimated by satellite-based random forest models. Dietary approaches to stop hypertension (DASH) and alternative Mediterranean diet (AMED) scores were calculated for each participant. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 36917
    “…Factors which significantly predicted early discharge in multivariable regression were: maternal age < 20 years (compared to 20–29 years, aOR: 1.44; 95%CI 1.13–1.82), unemployment (aOR: 0.78; 95%CI: 0.63–0.96), non-Christian religions (aOR: 1.65; 95CI: 1.21–2.24), and region of residence—Northern zone aOR:9.95 (95%CI:6.53–15.17) and Forest zone aOR:2.51 (95%CI:1.79–3.53) compared to the country’s capital cities (Douala or Yaounde). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 36918
    “…METHODS: We conducted a qualitative study in Kitale, Webuye, Kocholya, Turbo, Mosoriot and Burnt Forest areas of Western Kenya. We utilized the PRECEDE-PROCEED framework to understand the behavioral, environmental and ecological factors that would influence uptake and success of our intervention. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 36919
    “…The characteristics of the key OSPM genes were summarized in pan-cancer. The random survival forest analysis and multivariate Cox regression analysis were utilized to construct an OSPM-related signature. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 36920
    “…For model calibration, canopy cover (CC), plant height (PH), and 31 vegetation index (VI) were extracted from the images and used as predictors in the random forest (RF) and partial least squares regression (PLSR) algorithm. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS