Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36921por Twait, Emma L., Andaur Navarro, Constanza L., Gudnason, Vilmunur, Hu, Yi-Han, Launer, Lenore J., Geerlings, Mirjam I.“…Machine learning algorithms included elastic net regression, random forest, support vector machine, and elastic net Cox regression. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36922“…Dam-induced initial differentiation was further amplified by nitrogen and methane metabolism, forming an abrupt transition governing nitrate–methane metabolic interaction and gaseous methane sequestration depth. Using a random forest algorithm, we identified damming-sensitive taxa that possess distinctive metabolic strategies, including energy-saving mechanisms, unique motility behavior, and deep-environment preferences. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36923por Lv, Kun, Cui, Chunmei, Fan, Rui, Zha, Xiaojuan, Wang, Pengyu, Zhang, Jun, Zhang, Lina, Ke, Jing, Zhao, Dong, Cui, Qinghua, Yang, Liming“…We constructed the models using multiple machine learning methods, including logistic regression, random forest, deep neural network, and support vector machine, and selected the optimal one on the validation set. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36924por Ozkara, Burak Berksu, Karabacak, Mert, Kotha, Apoorva, Cristiano, Brian Cooper, Wintermark, Max, Yedavalli, Vivek Srikar“…For ML analyses, XGBoost, LightGBM, CatBoost, multi-layer perceptron, random forest, and logistic regression algorithms were utilized. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36925por Zheng, Yongxin, Wang, Jinping, Ling, Zhaoyi, Zhang, Jiamei, Zeng, Yuan, Wang, Ke, Zhang, Yu, Nong, Lingbo, Sang, Ling, Xu, Yonghao, Liu, Xiaoqing, Li, Yimin, Huang, Yongbo“…Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36926“…Metric confidence intervals (95%CI) were estimated by bootstrapping; random effects (RE) were predicted for LMM and GLMM. Forest-plot displays of ranked quality-metric point-estimates (95%CI) were generated for ICU hospital classifications (metropolitan, private, rural/regional, and tertiary). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36927por Andablo-Reyes, Araceli del Carmen, Moreno-Calles, Ana Isabel, Cancio-Coyac, Beatriz Adriana, Gutiérrez-Coatecatl, Ernesto, Rivero-Romero, Alexis Daniela, Hernández-Cendejas, Gerardo, Casas, Alejandro“…BACKGROUND: Agri-silvicultures (ASC) are biocultural practices procuring either the maintenance of wild diversity in predominantly agricultural spaces or introducing agrobiodiversity into forests. In the Mesoamerican region, ASC contribute to food sovereignty and territorial conservation and provide strategies for dealing with global changes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36928por Liang, Rui, Hong, Weifeng, Zhang, Yang, Ma, Di, Li, Jinwei, Shi, Yisong, Luo, Qing, Du, Shisuo, Song, Guanbin“…Prognosis, tumor microenvironment, immunological checkpoints, tumor immune dysfunction, rejection, treatment sensitivity, and putative biological pathways were examined. Random forest created the SRscores model. The anti-PD-1/anti-CTLA4 immunotherapy, tumor mutational burden, medication sensitivity, and cancer stem cell index were compared between the high- and low-risk score groups. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36929por Liu, Ruquan, Huang, Biaojie, Shao, Yongzhao, Cai, Yongming, Liu, Xi, Ren, Zhonglu“…Then, univariate Cox, random survival forest (RSF), and stepwise multiple Cox regression (StepCox) algorithms were used to identify memory B-cell-associated miRNAs that were significantly related to overall survival (OS). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36930por Vijithananda, Sahan M., Jayatilake, Mohan L., Gonçalves, Teresa C., Rato, Luis M., Weerakoon, Bimali S., Kalupahana, Tharindu D., Silva, Anil D., Dissanayake, Karuna, Hewavithana, P. B.“…Among the tested algorithms, the random forest classifier(0.8772 ± 0.0237) performed the highest mean-cross-validation score and selected to build the ML model which was able to predict tumor categories with an accuracy of 88.14% over the test set. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36931“…The predictive efficacy of random forest (RF), neural network, and XGBoost models was assessed through an exhaustive suite of performance indicators. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36932por Alarifi, Hana, Aldhalaan, Hesham, Hadjikhani, Nouchine, Johnels, Jakob Åsberg, Alarifi, Jhan, Ascenso, Guido, Alabdulaziz, Reem“…The best-performing algorithm was the random forest one, which achieved accuracy = 0.76 ± 0.08, precision = 0.78 ± 0.13, recall = 0.84 ± 0.07, and F1 = 0.80 ± 0.09. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36933“…Based on the filtered features, we developed five models (Clinical Model, GTV Model, GTV-Clinical Model, CTV Model, and CTV-Clinical Model) using the random forest algorithm and evaluated for their accuracy, precision, recall, F1-Score and AUC. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36934“…Red and Arctic foxes used habitat differentially, with near-exclusive use of forest patches by red foxes and marine habitats by Arctic foxes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36935por Middleton, Jo, Colthart, Gavin, Dem, Francesca, Elkins, Alice, Fairhead, James, Hazell, Richard J, Head, Michael G, Inacio, Joao, Jimbudo, Mavis, Jones, Christopher Iain, Laman, Moses, MacGregor, Hayley, Novotny, Vojtech, Peck, Mika, Philip, Jonah, Paliau, Jason, Pomat, William, Stockdale, Jessica A, Sui, Shen, Stewart, Alan J, Umari, Ruma, Walker, Stephen L, Cassell, Jackie A“…In doing so, it aided Wanang’s community to develop sustainably, without sacrificing their forest home.…”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36936“…All the five ML algorithms performed well in terms of discriminating between gram-positive and gram-negative bacteremia, but the performance of convolutional neural network (CNN) and random forest (RF) were better than other three algorithms. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36937“…In the second dataset of 44,000 tweets, both classic ML (using the Random Forest algorithm) and quantum computing demonstrate significantly reduced processing times compared to the first dataset, with no substantial difference between them. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36938por Pascual-Vázquez, Guillermo, Alonso-Sardón, Montserrat, Rodríguez-Alonso, Beatriz, Pardo-Lledías, Javier, Romero Alegría, Angela, Fernández-Soto, Pedro, Muñoz Bellido, Juan Luis, Muro, Antonio, Belhassen-García, Moncef“…A random-effects model was used to calculate pooled sensitivity, specificity, and diagnostic odds ratio (DOR). Forest plots and a summary of the receiving operating characteristics (SROC) curves displayed the outcomes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36939“…The classification performance of four conventional supervised ML models, namely, Ordinal logistic regression(OLR), Elastic-net ordinal regression(ENOR), Support Vector Machine(SVM), and Random Forest (RF) was compared. The comparative analysis is performed regarding the model's sensitivity to the participant’s metabolic syndrome(MtS)'positive status, hyper-parameter tuning, sensitivities to the size of training data, and the classification performance of the models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36940por Fragasso, Tiziana, Raggi, Valeria, Passaro, Davide, Tardella, Luca, Lasinio, Giovanna Jona, Ricci, Zaccaria“…The scope of the study is building a Machine Learning (ML) train model with Random Forest (RF) algorithm, based on electronic health record (EHR) data, able to forecast AKI continuously after 48 h in post-cardiac surgery children, and to test its performance. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto