Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36941“…The co-occurrence network analysis of rumen bacteria and archaea revealed that dietary treatments influenced microbial interaction patterns, with BS and MCE cows having more and stronger associations than CON cows. The random forest and heatmaps analysis demonstrated that the Halopenitus persicus was positively correlated with fat- and protein-corrected milk yield; Clostridium sp. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36942por Marcombe, Sébastien, Maithaviphet, Santi, Reyburn, Rita, Kunlaya, Khamfong, Silavong, Khambang, Hongvanthong, Bouasy, Vanisaveth, Viengxay, Sengsavath, Viengphone, Banouvong, Vilasack, Chindavongsa, Keobouphaphone, Khamlome, Boualam, Shortus, Matthew“…The findings showed that residual transmission may occur outdoors in the villages, and outside the villages in cultivation fields and forested areas. Epidemiological data showed that transmission was higher in surveillance sites which were targeted as part of a malaria response rather than sentinel sites. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36943por Kim, Younga, Kim, Hyeongsub, Choi, Jaewoo, Cho, Kyungjae, Yoo, Dongjoon, Lee, Yeha, Park, Su Jeong, Jeong, Mun Hui, Jeong, Seong Hee, Park, Kyung Hee, Byun, Shin-Yun, Kim, Taehwa, Ahn, Sung-Ho, Cho, Woo Hyun, Lee, Narae“…It is superior to conventional approaches, such as newborn early warning score systems (NEWS), Random Forest, and eXtreme gradient boosting (XGBoost) with 0.611 (95%CI, 0.600–0.622), 0.837 (95%CI, 0.828–0.845), and 0.0.831 (95%CI, 0.821–0.845), respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36944por Xu, Ning, Zhang, Yun, Du, Chunhong, Song, Jing, Huang, Junhui, Gong, Yanfeng, Jiang, Honglin, Tong, Yixin, Yin, Jiangfan, Wang, Jiamin, Jiang, Feng, Chen, Yue, Jiang, Qingwu, Dong, Yi, Zhou, Yibiao“…Eight machine learning algorithms, including eXtreme Gradient Boosting (XGB), support vector machine (SVM), random forest (RF), generalized boosting model (GBM), neural network (NN), classification and regression trees (CART), k-nearest neighbors (KNN), and generalized additive model (GAM), were employed to explore the impacts of climatic, geographical, and socioeconomic variables on the distribution of suitable areas for O. hupensis. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36945por Noll, Madeleine, Wall, Richard, Makepeace, Benjamin L., Newbury, Hannah, Adaszek, Lukasz, Bødker, René, Estrada-Peña, Agustín, Guillot, Jacques, da Fonseca, Isabel Pereira, Probst, Julia, Overgaauw, Paul, Strube, Christina, Zakham, Fathiah, Zanet, Stefania, Rose Vineer, Hannah“…Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36946por Gebeyehu, Natnael Atnafu, Tegegne, Kirubel Dagnaw, Abebe, Kelemu, Asefa, Yibeltal, Assfaw, Belete Birhan, Adella, Getachew Asmare, Alemu, Biresaw Wassihun, Sewyew, Dagne Addisu“…To evaluate publication bias, a forest plot, Begg’s test, and Egger’s test were employed. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36947por Peng, Zi-He, Tian, Juan-Hua, Chen, Bo-Hong, Zhou, Hai-Bin, Bi, Hang, He, Min-Xin, Li, Ming-Rui, Zheng, Xin-Yu, Wang, Ya-Wen, Chong, Tie, Li, Zhao-Lun“…Gradient Boosting Survival Analysis (GBSA), Random Survival Forest (RSF), and Extra Survival Trees (EST) were used to develop prognosis models, which were compared to Cox regression. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36948por Zhang, Lin, Liu, Yue, Wang, Kaiyue, Ou, Xiangqin, Zhou, Jiashun, Zhang, Houliang, Huang, Min, Du, Zhenfang, Qiang, Sheng“…IML was explicitly proposed in this research, which is composed of six machine learning algorithms, including support vector machine (SVM), neural network (NN), random forest (RF), gradient boosting machine (GBM), decision trees (DT), and least absolute shrinkage and selection operator (LASSO). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36949por Zenebe, Yohannes, Habtamu, Meseret, Abebe, Markos, Tulu, Begna, Atnafu, Abay, Mekonnen, Daniel, Lang, Roland, Munshea, Abaineh“…Finally the results are presented with a meta-analysis of pooled estimates, forest plots, and tables. The quantitative data were analyzed using Stata version 14. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36950“…Kaplan-Meier (KM) curves showed that Group 2 APE patients had the highest risk of all-cause mortality compared with the other two groups (log-rank test, P = 0.0004). Forest plot visualization using the Cox proportional hazard model showed a significant increase in the risk of 30-day all-cause mortality by 239% (hazard ratio [HR] = 3.385 [1.115–10.273], P = 0.031) and 338% (HR = 4.377 [1.228–15.598], P = 0.023), and the trend test showed a statistical difference (P = 0.042). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36951“…Exploiting conventional logistic regression (LR) and five ML algorithms including decision tree, random forest, gradient boosting classifier (GBC), Gaussian Naive Bayes and multilayer perceptron, we developed and validated the prediction models of PO-AKI. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36952Emerging infectious disease surveillance using a hierarchical diagnosis model and the Knox algorithmpor Wang, Mengying, Yang, Bingqing, Liu, Yunpeng, Yang, Yingyun, Ji, Hong, Yang, Cheng“…The model results were compared with those of other models such as XGBoost and Random Forest using the following evaluation indicators: accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36953“…Three NAFLD risk prediction models (I, II, and III) were constructed using multivariate logistic regression analysis based on the least absolute shrinkage and selection operator regression analysis, and random forest model to select individual characteristics, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36954por Liu, Ting, Dong, Di, Zhao, Xun, Ou, Xiao-Min, Yi, Jun-Lin, Guan, Jian, Zhang, Ye, Xiao-Fei, Lv, Xie, Chuan-Miao, Luo, Dong-Hua, Sun, Rui, Chen, Qiu-Yan, Xing, Lv, Guo, Shan-Shan, Liu, Li-Ting, Lin, Da-Feng, Chen, Yan-Zhou, Lin, Jie-Yi, Luo, Mei-Juan, Yan, Wen-Bin, He, Mei-Lin, Mao, Meng-Yuan, Zhu, Man-Yi, Chen, Wen-Hui, Shen, Bo-Wen, Wang, Shi-Qian, Li, Hai-Lin, Zhong, Lian-Zhen, Hu, Chao-Su, Wu, De-Hua, Mai, Hai-Qiang, Tian, Jie, Tang, Lin-Quan“…We built a machine learning (random forest) radiomic signature based on the pre-treatment multiparametric magnetic resonance images for predicting PRNN following re-radiotherapy. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36955“…We then trained and optimized our model using random forest (RF), extreme gradient boosting, light gradient boosting machine, and logistic regression models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36956por Zhang, Boyang, Lin, Shili, Moraes, Luis, Firkins, Jeffrey, Hristov, Alexander N., Kebreab, Ermias, Janssen, Peter H., Bannink, André, Bayat, Alireza R., Crompton, Les A., Dijkstra, Jan, Eugène, Maguy A., Kreuzer, Michael, McGee, Mark, Reynolds, Christopher K., Schwarm, Angela, Yáñez-Ruiz, David R., Yu, Zhongtang“…These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36957por Li, Haoguang, Zhou, Lu, Zhou, Wei, Zhang, Xiuling, Shang, Jingjing, Feng, Xueqin, Yu, Le, Fan, Jie, Ren, Jie, Zhang, Rongwei, Duan, Xinwang“…We employed machine learning algorithms—random forest (RF), support vector machine (SVM), and least absolute shrinkage and selection operator (LASSO) logistic regression—to select key hub genes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36958por Murray, Christopher JL, Lozano, Rafael, Flaxman, Abraham D, Serina, Peter, Phillips, David, Stewart, Andrea, James, Spencer L, Vahdatpour, Alireza, Atkinson, Charles, Freeman, Michael K, Ohno, Summer Lockett, Black, Robert, Ali, Said Mohammed, Baqui, Abdullah H, Dandona, Lalit, Dantzer, Emily, Darmstadt, Gary L, Das, Vinita, Dhingra, Usha, Dutta, Arup, Fawzi, Wafaie, Gómez, Sara, Hernández, Bernardo, Joshi, Rohina, Kalter, Henry D, Kumar, Aarti, Kumar, Vishwajeet, Lucero, Marilla, Mehta, Saurabh, Neal, Bruce, Praveen, Devarsetty, Premji, Zul, Ramírez-Villalobos, Dolores, Remolador, Hazel, Riley, Ian, Romero, Minerva, Said, Mwanaidi, Sanvictores, Diozele, Sazawal, Sunil, Tallo, Veronica, Lopez, Alan D“…METHODS: We investigated the validity of five automated VA methods for assigning cause of death: InterVA-4, Random Forest (RF), Simplified Symptom Pattern (SSP), Tariff method (Tariff), and King-Lu (KL), in addition to physician review of VA forms (PCVA), based on 12,535 cases from diverse populations for which the true cause of death had been reliably established. …”
Publicado 2014
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36959por McCann, Donna C, Thompson, Margaret, Daley, David, Barton, Joanne, Laver-Bradbury, Cathy, Hutchings, Judy, Coghill, David, Stanton, Louise, Maishman, Tom, Dixon, Liz, Caddy, Josh, Chorozoglou, Maria, Raftery, James, Sonuga-Barke, Edmund“…BACKGROUND: The New Forest Parenting Programme (NFPP) is a home-delivered, evidence-based parenting programme to target symptoms of attention-deficit/hyperactivity disorder (ADHD) in preschool children. …”
Publicado 2014
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36960por D’Amato, Gennaro, Holgate, Stephen T., Pawankar, Ruby, Ledford, Dennis K., Cecchi, Lorenzo, Al-Ahmad, Mona, Al-Enezi, Fatma, Al-Muhsen, Saleh, Ansotegui, Ignacio, Baena-Cagnani, Carlos E., Baker, David J., Bayram, Hasan, Bergmann, Karl Christian, Boulet, Louis-Philippe, Buters, Jeroen T. M., D’Amato, Maria, Dorsano, Sofia, Douwes, Jeroen, Finlay, Sarah Elise, Garrasi, Donata, Gómez, Maximiliano, Haahtela, Tari, Halwani, Rabih, Hassani, Youssouf, Mahboub, Basam, Marks, Guy, Michelozzi, Paola, Montagni, Marcello, Nunes, Carlos, Oh, Jay Jae-Won, Popov, Todor A., Portnoy, Jay, Ridolo, Erminia, Rosário, Nelson, Rottem, Menachem, Sánchez-Borges, Mario, Sibanda, Elopy, Sienra-Monge, Juan José, Vitale, Carolina, Annesi-Maesano, Isabella“…Increased concentrations of greenhouse gases, and especially carbon dioxide (CO(2)), in the atmosphere have already warmed the planet substantially, causing more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods – all of which can put the respiratory health of the public at risk. …”
Publicado 2015
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto