Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
36981por Ou, Jing, Li, Rui, Zeng, Rui, Wu, Chang-qiang, Chen, Yong, Chen, Tian-wu, Zhang, Xiao-ming, Wu, Lan, Jiang, Yu, Yang, Jian-qiong, Cao, Jin-ming, Tang, Sun, Tang, Meng-jie, Hu, Jiani“…The optimal radiomic features were chosen using multivariable logistic regression, random forest, support vector machine, X-Gradient boost and decision tree classifiers. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36982por Oikonomou, Evangelos K, Williams, Michelle C, Kotanidis, Christos P, Desai, Milind Y, Marwan, Mohamed, Antonopoulos, Alexios S, Thomas, Katharine E, Thomas, Sheena, Akoumianakis, Ioannis, Fan, Lampson M, Kesavan, Sujatha, Herdman, Laura, Alashi, Alaa, Centeno, Erika Hutt, Lyasheva, Maria, Griffin, Brian P, Flamm, Scott D, Shirodaria, Cheerag, Sabharwal, Nikant, Kelion, Andrew, Dweck, Marc R, Van Beek, Edwin J R, Deanfield, John, Hopewell, Jemma C, Neubauer, Stefan, Channon, Keith M, Achenbach, Stephan, Newby, David E, Antoniades, Charalambos“…In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36983por Lorenzi, Roberta Maria, Palesi, Fulvia, Castellazzi, Gloria, Vitali, Paolo, Anzalone, Nicoletta, Bernini, Sara, Cotta Ramusino, Matteo, Sinforiani, Elena, Micieli, Giuseppe, Costa, Alfredo, D’Angelo, Egidio, Gandini Wheeler-Kingshott, Claudia A. M.“…Correlated features (ρ > 0.7) were removed, and the best subset identified for patients’ classification with the Random Forest algorithm. General linear model regression was used to find significant differences between groups (p ≤ 0.05). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36984por Zhao, Chun-Hong, Wu, Hui-Tao, Che, He-Bin, Song, Ya-Nan, Zhao, Yu-Zhuo, Li, Kai-Yuan, Xiao, Hong-Ju, Zhai, Yong-Zhi, Liu, Xin, Lu, Hong-Xi, Li, Tan-Shi“…In the training model, logistic regression, random forest, adaboost and bagging were selected. We also collected the emergency room data from December 2018 to December 2019 with the same inclusion and exclusion criterion. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36985por Ketema, Daniel Bekele, Leshargie, Cheru Tesema, Kibret, Getiye Dejenu, Assemie, Moges Agazhe, Alamneh, Alehegn Aderaw, Kassa, Getachew Mullu, Alebel, Animut“…Data were analyzed using (STATA)™ version 14.1 software, and the pooled prevalence with 95% confidence intervals (CI) were presented using tables and forest plots. The presence of statistical heterogeneity within the included studies was evaluated using I-squared statistic. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36986“…The quality of studies was assessed using the STROBE tool (von Elm et al., 1) Individual study data was analyzed using odds ratios and 95% confidence intervals as a measure of association between exposure (co-infection), patient outcome and results summarised using forest plots and tables RESULTS: Nineteen (19) studies from all over the world were identified and included in the review. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36987por Pförringer, D., Braun, K. F., Mühlhofer, H., Schneider, J., Stemberger, A., Seifried, E., Pohlscheidt, E., Seidel, M., Edenharter, G., Duscher, D., Burgkart, R., Obermeier, A.“…Influence of frequency and power density in the range of soft and hard cavitation on the inactivation of transfusion-relevant model viruses for Hepatitis-(BVDV = bovine diarrhea virus), for Herpes-(SFV = Semliki Forest virus, PRV = pseudorabies virus) and Parvovirus B19 (PPV = porcine parvovirus) were examined. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36988por Huang, Bingsheng, Wang, Jifei, Sun, Meili, Chen, Xin, Xu, Danyang, Li, Zi-Ping, Ma, Jinting, Feng, Shi-Ting, Gao, Zhenhua“…The MRI parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36989“…METHODS: Six machine learning algorithms, including logistic regression (LR), support vector machine (SVM), artificial neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) were applied to build the predictive models with a unique feature set. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36990por Nguela, Rachel L., Bigoga, Jude D., Armel, Tedjou N., Esther, Tallah, Line, Dongmo, Boris, Njeambosay A., Frederic, Tchouine, Kazi, Riksum, Williams, Peter, Mbacham, Wilfred F., Leke, Rose G. F.“…BACKGROUND: This study evaluated the effectiveness of improved housing on indoor residual mosquito density and exposure to infected Anophelines in Minkoameyos, a rural community in southern forested Cameroon. METHODS: Following the identification of housing factors affecting malaria prevalence in 2013, 218 houses were improved by screening the doors and windows, installing plywood ceilings on open eaves and closing holes on walls and doors. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36991“…Next, calendar data form the first half of the intervention were retained and summary functions used to create 18 predictors for random forest machine learning models, the classification accuracies of which were ultimately estimated using nested cross-validation. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36992por Chen, Zisheng, Xiong, Shan, Li, Jianfu, Ou, Limin, Li, Caichen, Tao, Jinsheng, Jiang, Zeyu, Fan, Jianbing, He, Jianxing, Liang, Wenhua“…Two preliminary prognostic models predictive of LN metastasis were built by random forest with differentially methylated markers shared by plasma and tissue samples and markers present either in plasma or tissue samples respectively. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36993por Ghimire, Prakash, Rijal, Komal Raj, Adhikari, Nabaraj, Thakur, Garib Das, Marasini, Baburam, Thapa Shrestha, Upendra, Banjara, Megha Raj, Pant, Shishir Kumar, Adhikari, Bipin, Dumre, Shyam Prakash, Singh, Nihal, Pigeon, Olivier, Chareonviriyaphap, Theeraphap, Chavez, Irwin, Ortega, Leonard, Hii, Jeffrey“…METHODS: Assessments were conducted on random samples (n = 440) of LLINs from the eleven districts representing four ecological zones: Terai plain region (Kailali and Kanchanpur districts), outer Terai fluvial ecosystem (Surkhet, Dang, and Rupandhei districts), inner Terai forest ecosystem (Mahhothari, Dhanusa, and Illam districts), and Hills and river valley (Kavrepalanchock and Sindhupalchok districts). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36994por Bell, Griffin J., Loop, Matthew S., Mvalo, Tisungane, Juliano, Jonathan J., Mofolo, Innocent, Kamthunzi, Portia, Tegha, Gerald, Lievens, Marc, Bailey, Jeffrey, Emch, Michael, Hoffman, Irving“…We observed statistically significant modification of the efficacy of RTS,S/AS01 by forest cover, suggesting that initial vaccine efficacy and the importance of the fourth dose varies based on ecological context. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36995por Banerjee, Abhirup, Ray, Surajit, Vorselaars, Bart, Kitson, Joanne, Mamalakis, Michail, Weeks, Simonne, Baker, Mark, Mackenzie, Louise S.“…We find that with full blood counts random forest, shallow learning and a flexible ANN model predict SARS-CoV-2 patients with high accuracy between populations on regular wards (AUC = 94–95%) and those not admitted to hospital or in the community (AUC = 80–86%). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36996“…In addition, plots from forest, farmland and lake land that were far from GP and largely undisturbed were also investigated as more extreme contrasts (CK-far). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36997por Yuan, Hai-Tao, Wang, Cheng-Ling, Liu, Li-Na, Wang, Dan, Li, Dan, Li, Zhen-Jun, Liu, Zhi-Guo“…The incidence rates in developed areas of animal husbandry (Horqin Youyi Qianqi [161.2/100 000] and Horqin Youyi Zhongqi [112.1/100 000]) were significantly higher than those in forest areas (Arxan [19.2/100 000]) (χ(2) = 32.561, P < 0.001). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36998por Liu, Qiufang, Sun, Dazhen, Li, Nan, Kim, Jinman, Feng, Dagan, Huang, Gang, Wang, Lisheng, Song, Shaoli“…Then, multiple supervised machine learning models were applied to identify prognostic radiomic features through: (I) a multi-variate random forest to select features of high importance in discriminating different EGFR mutation status; (II) a logistic regression model to select features of the highest predictive value of the EGFR subtypes. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
36999por Pryss, Rüdiger, Schlee, Winfried, Hoppenstedt, Burkhard, Reichert, Manfred, Spiliopoulou, Myra, Langguth, Berthold, Breitmayer, Marius, Probst, Thomas“…Machine learning methods—a feedforward neural network, a decision tree, a random forest classifier, and a support vector machine—were applied to address the research question. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37000por Tseng, Po-Yu, Chen, Yi-Ting, Wang, Chuen-Heng, Chiu, Kuan-Ming, Peng, Yu-Sen, Hsu, Shih-Ping, Chen, Kang-Lung, Yang, Chih-Yu, Lee, Oscar Kuang-Sheng“…The machine learning methods used included logistic regression, support vector machine (SVM), random forest (RF), extreme gradient boosting (XGboost), and ensemble (RF + XGboost). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto