Mostrando 37,021 - 37,040 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.30s Limitar resultados
  1. 37021
  2. 37022
    “…Diagnostic performance of state-of-the-art scores, such as HINTS (Head Impulse, gaze-evoked Nystagmus, Test of Skew) and ABCD(2) (Age, Blood, Clinical features, Duration, Diabetes), for the differentiation of vestibular stroke vs. peripheral AVS was compared to various machine-learning approaches: (i) linear logistic regression (LR), (ii) non-linear random forest (RF), (iii) artificial neural network, and (iv) geometric deep learning (Single/MultiGMC). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37023
    “…Using both regression trees and Random Survival Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37024
    “…RESULTS: Nineteen xylanolytic bacteria (SXB1-SXB19) were isolated from Simlipal forest soil samples following dilution plate technique using corn cob xylan-enriched nutrient agar medium and screened for their xylanase-producing ability. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37025
    “…Mantel-Haenszel risk ratio model was used in the meta-analysis, and the results are described using forest plot with 95% confidence interval. Heterogeneity was assessed using the I(2) value. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37026
    “…Scalp EEG recordings from a total of 134 patients with epilepsy are used for training a random forest based classification model. Various time-series based features are used to characterize the EEG signal for the classification task. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37027
    “…Heterogeneity between-study was explored by forest plot and inconsistency index (I(2)). The publication bias was checked by a funnel plot and Egger’s test. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37028
    “…Predictive models used random forest learning (AI: artificial intelligence) to adjust for predictors, and multiple regression analysis to construct ASHRO scores. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37029
    “…However, each passing vehicle caused a high mortality risk, and we found large numbers of larvae run over by cars, especially close to covered, forest-like habitat patches. In contrast, adult females in the same area were most often found glowing in more open rocky and grassy habitats. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37030
    “…Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a 10-fold training scheme of 0.759 ± 0.027 when predicting an external test set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37031
    “…The structure of this dataset was investigated using network analysis applied to the pairwise similarities between reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluate whether reports of flavours and subjective effects could identify the labelled species cultivar. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37032
    “…Heterogeneity of the studies was checked by Forest plot and I-squared statistic. Both inverse-variance fixed-effect and DerSimonian and Laird random-effects methods were applied to estimate the pooled level of HRQoL (for both WHO-QoL-BREF and SF-36) and the effect size of associated factors. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37033
    “…Four hundred and eighty standardized radiomic features were extracted per tumor. Random forest models were trained to predict lymph node involvement (LNI), presence of any metastasis, Gleason score ≥ 8, and presence of extracapsular extension (ECE). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37034
    “…It is actually a two-layer model with random forest (RF) as classifier algorithm. In the first layer, the model carries out a multi-class classification for the early diagnosis of AD patients. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37035
    “…The conventional models and conventional+GRS (genetic risk score) models were developed with Cox regression, artificial neural network (ANN), random forest (RF), and gradient boosting machine (GBM) classifiers in the training set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37036
    “…We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients’ initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37037
    “…A meta-analysis of DHS data of the Sub-Saharan countries was conducted to generate pooled prevalence, and a forest plot was used to present it. A multilevel multivariable logistic regression model was fitted to identify determinants of recommended ANC utilization. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37038
    “…Accordingly, we developed clinical and radiological models using the following machine learning classifiers, including naive bayes (NB), linear regression (LR), random forest (RF), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), K-nearest neighbor (KNN), kernel support vector machine (k-SVM), and back propagation neural networks (BPNN). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37039
    “…The base classifiers in each layer are decision tree, Gradient boosting classifier, logistics regression, random forest and support vector machines which are trained independently and aggregated based on Vote boosting method. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37040
    “…Six machine learning models (logistic regression [LR], random forest [RF], decision tree [DT], eXtreme Gradient Boosting [XGB], Gaussian Naïve Bayes [GNB], and K-Nearest Neighbour [KNN]) were used to predict asymptomatic CAS and compared their predictability in terms of the area under the receiver operating characteristic curve (AUCROC), accuracy (ACC), and F1 score (F1). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS