Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37021por Kpatènon, Mariano Joly, Salako, Kolawolé Valère, Santoni, Sylvain, Zekraoui, Leila, Latreille, Muriel, Tollon-Cordet, Christine, Mariac, Cédric, Jaligot, Estelle, Beulé, Thierry, Adéoti, Kifouli“…(African fan palm) is an important non-timber forest product-providing palm that faces multiple anthropogenic threats to its genetic diversity. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37022por Ahmadi, Seyed-Ahmad, Vivar, Gerome, Navab, Nassir, Möhwald, Ken, Maier, Andreas, Hadzhikolev, Hristo, Brandt, Thomas, Grill, Eva, Dieterich, Marianne, Jahn, Klaus, Zwergal, Andreas“…Diagnostic performance of state-of-the-art scores, such as HINTS (Head Impulse, gaze-evoked Nystagmus, Test of Skew) and ABCD(2) (Age, Blood, Clinical features, Duration, Diabetes), for the differentiation of vestibular stroke vs. peripheral AVS was compared to various machine-learning approaches: (i) linear logistic regression (LR), (ii) non-linear random forest (RF), (iii) artificial neural network, and (iv) geometric deep learning (Single/MultiGMC). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37023por Desa, Danielle E., Strawderman, Robert L., Wu, Wencheng, Hill, Robert L., Smid, Marcel, Martens, J. W. M., Turner, Bradley M., Brown, Edward B.“…Using both regression trees and Random Survival Forests for MFS outcome, we obtained data-driven prediction rules that show F/B from tumor-stroma interface, but not tumor bulk, and S-ODX both contribute to predicting MFS in this patient cohort. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37024“…RESULTS: Nineteen xylanolytic bacteria (SXB1-SXB19) were isolated from Simlipal forest soil samples following dilution plate technique using corn cob xylan-enriched nutrient agar medium and screened for their xylanase-producing ability. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37025por Djuwantono, Tono, Aviani, Jenifer Kiem, Permadi, Wiryawan, Achmad, Tri Hanggono, Halim, Danny“…Mantel-Haenszel risk ratio model was used in the meta-analysis, and the results are described using forest plot with 95% confidence interval. Heterogeneity was assessed using the I(2) value. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37026por Lamichhane, Bishal, Kim, Yejin, Segarra, Santiago, Zhang, Guoqiang, Lhatoo, Samden, Hampson, Jaison, Jiang, Xiaoqian“…Scalp EEG recordings from a total of 134 patients with epilepsy are used for training a random forest based classification model. Various time-series based features are used to characterize the EEG signal for the classification task. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37027“…Heterogeneity between-study was explored by forest plot and inconsistency index (I(2)). The publication bias was checked by a funnel plot and Egger’s test. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37028“…Predictive models used random forest learning (AI: artificial intelligence) to adjust for predictors, and multiple regression analysis to construct ASHRO scores. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37029por Lehtonen, Topi K., Babic, Natarsha L., Piepponen, Timo, Valkeeniemi, Otso, Borshagovski, Anna-Maria, Kaitala, Arja“…However, each passing vehicle caused a high mortality risk, and we found large numbers of larvae run over by cars, especially close to covered, forest-like habitat patches. In contrast, adult females in the same area were most often found glowing in more open rocky and grassy habitats. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37030por Liu, Anika, Walter, Moritz, Wright, Peter, Bartosik, Aleksandra, Dolciami, Daniela, Elbasir, Abdurrahman, Yang, Hongbin, Bender, Andreas“…Support Vector Machine (SVM) and Random Forest (RF) classifiers showed comparable performance to previously published models with a mean balanced accuracy over models generated using 5-fold LOCO-CV inside a 10-fold training scheme of 0.759 ± 0.027 when predicting an external test set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37031por de la Fuente, Alethia, Zamberlan, Federico, Sánchez Ferrán, Andrés, Carrillo, Facundo, Tagliazucchi, Enzo, Pallavicini, Carla“…The structure of this dataset was investigated using network analysis applied to the pairwise similarities between reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluate whether reports of flavours and subjective effects could identify the labelled species cultivar. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37032por Tusa, Biruk Shalmeno, Weldesenbet, Adisu Birhanu, Gemada, Assefa Tola, Merga, Bedasa Taye, Regassa, Lemma Demissie“…Heterogeneity of the studies was checked by Forest plot and I-squared statistic. Both inverse-variance fixed-effect and DerSimonian and Laird random-effects methods were applied to estimate the pooled level of HRQoL (for both WHO-QoL-BREF and SF-36) and the effect size of associated factors. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37033por Cysouw, Matthijs C. F., Jansen, Bernard H. E., van de Brug, Tim, Oprea-Lager, Daniela E., Pfaehler, Elisabeth, de Vries, Bart M., van Moorselaar, Reindert J. A., Hoekstra, Otto S., Vis, André N., Boellaard, Ronald“…Four hundred and eighty standardized radiomic features were extracted per tumor. Random forest models were trained to predict lymph node involvement (LNI), presence of any metastasis, Gleason score ≥ 8, and presence of extracapsular extension (ECE). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37034por El-Sappagh, Shaker, Alonso, Jose M., Islam, S. M. Riazul, Sultan, Ahmad M., Kwak, Kyung Sup“…It is actually a two-layer model with random forest (RF) as classifier algorithm. In the first layer, the model carries out a multi-class classification for the early diagnosis of AD patients. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37035por Niu, Miaomiao, Zhang, Liying, Wang, Yikang, Tu, Runqi, Liu, Xiaotian, Hou, Jian, Huo, Wenqian, Mao, Zhenxing, Wang, Zhenfei, Wang, Chongjian“…The conventional models and conventional+GRS (genetic risk score) models were developed with Cox regression, artificial neural network (ANN), random forest (RF), and gradient boosting machine (GBM) classifiers in the training set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37036por Heldt, Frank S., Vizcaychipi, Marcela P., Peacock, Sophie, Cinelli, Mattia, McLachlan, Lachlan, Andreotti, Fernando, Jovanović, Stojan, Dürichen, Robert, Lipunova, Nadezda, Fletcher, Robert A., Hancock, Anne, McCarthy, Alex, Pointon, Richard A., Brown, Alexander, Eaton, James, Liddi, Roberto, Mackillop, Lucy, Tarassenko, Lionel, Khan, Rabia T.“…We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients’ initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37037por Tessema, Zemenu Tadesse, Teshale, Achamyeleh Birhanu, Tesema, Getayeneh Antehunegn, Tamirat, Koku Sisay“…A meta-analysis of DHS data of the Sub-Saharan countries was conducted to generate pooled prevalence, and a forest plot was used to present it. A multilevel multivariable logistic regression model was fitted to identify determinants of recommended ANC utilization. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37038por Liu, Qin, Pang, Baoguo, Li, Haijun, Zhang, Bin, Liu, Yumei, Lai, Lihua, Le, Wenjun, Li, Jianyu, Xia, Tingting, Zhang, Xiaoxian, Ou, Changxing, Ma, Jianjuan, Li, Shenghao, Guo, Xiumei, Zhang, Shuixing, Zhang, Qingling, Jiang, Min, Zeng, Qingsi“…Accordingly, we developed clinical and radiological models using the following machine learning classifiers, including naive bayes (NB), linear regression (LR), random forest (RF), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), K-nearest neighbor (KNN), kernel support vector machine (k-SVM), and back propagation neural networks (BPNN). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37039“…The base classifiers in each layer are decision tree, Gradient boosting classifier, logistics regression, random forest and support vector machines which are trained independently and aggregated based on Vote boosting method. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37040por Fan, Jiaxin, Chen, Mengying, Luo, Jian, Yang, Shusen, Shi, Jinming, Yao, Qingling, Zhang, Xiaodong, Du, Shuang, Qu, Huiyang, Cheng, Yuxuan, Ma, Shuyin, Zhang, Meijuan, Xu, Xi, Wang, Qian, Zhan, Shuqin“…Six machine learning models (logistic regression [LR], random forest [RF], decision tree [DT], eXtreme Gradient Boosting [XGB], Gaussian Naïve Bayes [GNB], and K-Nearest Neighbour [KNN]) were used to predict asymptomatic CAS and compared their predictability in terms of the area under the receiver operating characteristic curve (AUCROC), accuracy (ACC), and F1 score (F1). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto