Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37041por Tran, Linh, Chi, Lianhua, Bonti, Alessio, Abdelrazek, Mohamed, Chen, Yi-Ping Phoebe“…A total of five AI algorithms, including four classical machine learning algorithms (logistic regression [LR], random forest [RF], extra trees [ET], and gradient boosting trees [GBT]) and a deep learning algorithm, which is a densely connected neural network (DNN), were developed and compared in this study. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37042“…We used about 9 classifiers, RandomForest, Extreme Gradient boosting, ANN, LSTM, GRU, BILSTM, 1DCNN, ensembles of ANN, and ensembles of LSTM which gave the best accuracy of 0.91, 0.9286, 0.945, 0.94, 0.94, 0.92, 0.95, and 0.96% respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37043por Chung, Heewon, Ko, Hoon, Kang, Wu Seong, Kim, Kyung Won, Lee, Hooseok, Park, Chul, Song, Hyun-Ok, Choi, Tae-Young, Seo, Jae Ho, Lee, Jinseok“…Feature importance analysis was performed with AdaBoost, random forest, and eXtreme Gradient Boosting (XGBoost); the AI model for predicting COVID-19 severity among patients was developed with a 5-layer deep neural network (DNN) with the 20 most important features, which were selected based on ranked feature importance analysis of 37 features from the comprehensive data set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37044por Miron, Richard J., Moraschini, Vittorio, Fujioka-Kobayashi, Masako, Zhang, Yufeng, Kawase, Tomoyuki, Cosgarea, Raluca, Jepsen, Soren, Bishara, Mark, Canullo, Luigi, Shirakata, Yoshinori, Gruber, Reinhard, Ferenc, Döri, Calasans-Maia, Monica Diuana, Wang, Hom-Lay, Sculean, Anton“…Studies were classified into 10 categories as follows: (1) open flap debridement (OFD) alone versus OFD/PRF; (2) OFD/bone graft (OFD/BG) versus OFD/PRF; (3) OFD/BG versus OFD/BG/PRF; (4–6) OFD/barrier membrane (BM), OFD/PRP, or OFD/enamel matrix derivative (EMD) versus OFD/PRF; (7) OFD/EMD versus OFD/EMD/PRF; (8–10) OFD/PRF versus OFD/PRF/metformin, OFD/PRF/bisphosphonates, or OFD/PRF/statins. Weighted means and forest plots were calculated for probing depth (PD), clinical attachment level (CAL), and radiographic bone fill (RBF). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37045por da Silva, Cecilia Cordeiro, de Lima, Clarisse Lins, da Silva, Ana Clara Gomes, Silva, Eduardo Luiz, Marques, Gabriel Souza, de Araújo, Lucas Job Brito, Albuquerque Júnior, Luiz Antônio, de Souza, Samuel Barbosa Jatobá, de Santana, Maíra Araújo, Gomes, Juliana Carneiro, Barbosa, Valter Augusto de Freitas, Musah, Anwar, Kostkova, Patty, dos Santos, Wellington Pinheiro, da Silva Filho, Abel Guilhermino“…Four regression methods were investigated: linear regression, support vector machines (polynomial kernels and RBF), multilayer perceptrons, and random forests. We use the percentage RMSE and the correlation coefficient as quality metrics. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37046“…With original Kinect skeleton data extracting and preprocessing, the proposed experiment demonstrated four strong machine learning tools: Support Vector Machine, Logistic Regression, Random Forest and Gradient Boosting. Using the precision, recall, sensitivity, specificity, roc-curve, confusion matrix et.al, indicators were calculated as the measurement of methods, which were commonly used to evaluate classification methodologies. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37047“…Next, the integrated classifier system Rotation Forest uses “support vector machine” subclassifications to divide three types of feature spaces into several subsets. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37048por Abbaszadeh Afshar, Mohammad Javad, Mohebali, Mehdi, Mohtasebi, Sina, Teimouri, Aref, Sedaghat, Bahareh, Saberi, Reza“…Pooled prevalence was estimated using a random-effects model with a 95% confidence interval (CI) and depicted as a forest plot, while heterogeneity was evaluated using Cochran’s Q-test. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37049por Wang, Zixing, Li, Ning, Zheng, Fuling, Sui, Xin, Han, Wei, Xue, Fang, Xu, Xiaoli, Yang, Cuihong, Hu, Yaoda, Wang, Lei, Song, Wei, Jiang, Jingmei“…A radiomics biomarker was then built with the random survival forest method. The patients with nodules were divided into low-, middle- and high-risk subgroups by two biomarker cutoffs that optimized time-dependent sensitivity and specificity for decisions about diagnostic workup within 3 months and about repeat screening after 12 months, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37050por Michel, Pierre, Ngo, Nicolas, Pons, Jean-François, Delliaux, Stéphane, Giorgi, Roch“…The performance of this feature selection approach was compared to that of three other approaches, with the first two based on the Random Forest technique and the other on receiver operating characteristic curve analysis. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37051por Mirsadeghi, Leila, Haji Hosseini, Reza, Banaei-Moghaddam, Ali Mohammad, Kavousi, Kaveh“…Then, an ensemble classifier (EC) learning algorithm called EARN (Ensemble of Artificial Neural Network, Random Forest, and non-linear Support Vector Machine) is proposed to evaluate plausible driver genes for metastatic breast cancer (MBCA). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37052por Janczewska, Ewa, Kołek, Mateusz Franciszek, Lorenc, Beata, Klapaczyński, Jakub, Tudrujek-Zdunek, Magdalena, Sitko, Marek, Mazur, Włodzimierz, Zarębska-Michaluk, Dorota, Buczyńska, Iwona, Dybowska, Dorota, Czauż-Andrzejuk, Agnieszka, Berak, Hanna, Krygier, Rafał, Jaroszewicz, Jerzy, Citko, Jolanta, Piekarska, Anna, Dobracka, Beata, Socha, Łukasz, Deroń, Zbigniew, Laurans, Łukasz, Białkowska-Warzecha, Jolanta, Tronina, Olga, Adamek, Brygida, Tomasiewicz, Krzysztof, Simon, Krzysztof, Pawłowska, Malgorzata, Halota, Waldemar, Flisiak, Robert“…Classical statistical analysis revealed that treatment ineffectiveness seemed to be influenced by the male sex, which was not confirmed by the multivariate analysis using the machine learning algorithm (random forest). Coinfection with HBV (including patients with on-treatment reactivation of HBV infection) or HIV, extrahepatic manifestations, and renal failure did not significantly affect the treatment efficacy. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37053por Oladeji, Olubusola, Zhang, Chi, Moradi, Tiam, Tarapore, Dharmesh, Stokes, Andrew C, Marivate, Vukosi, Sengeh, Moinina D, Nsoesie, Elaine O“…Machine learning algorithms (ie, random forest, support vector machine, Bayes generalized linear model, gradient boosting, and an ensemble of the individual methods) were used to identify search terms and patterns that correlate with changes in obesity and overweight prevalence across Africa. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37054por Wu, Chia-Tung, Li, Guo-Hung, Huang, Chun-Ta, Cheng, Yu-Chieh, Chen, Chi-Hsien, Chien, Jung-Yien, Kuo, Ping-Hung, Kuo, Lu-Cheng, Lai, Feipei“…With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37055por Zhao, Tianyi, Zhang, Yifang, Ma, Xiaohong, Wei, Lina, Hou, Yixin, Sun, Rui, Jiang, Jie“…Univariate Cox regression analysis was used to select GPL-related genes with prognostic value. The Random forest algorithm, LASSO algorithm and PPI network were used to identify critical genes. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37056“…Linear discriminant analysis (LDA) and random forest (RF) algorithms were used to develop the classification models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37057por Chen, Yuan, Xu, Ruiyuan, Ruze, Rexiati, Yang, Jinshou, Wang, Huanyu, Song, Jianlu, You, Lei, Wang, Chengcheng, Zhao, Yupei“…Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37058“…We used an MLC model, based on the Random Forest (RF) technique, to leverage these correlations and predict four complications simultaneously. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37059por Chan, Lili, Nadkarni, Girish N., Fleming, Fergus, McCullough, James R., Connolly, Patricia, Mosoyan, Gohar, El Salem, Fadi, Kattan, Michael W., Vassalotti, Joseph A., Murphy, Barbara, Donovan, Michael J., Coca, Steven G., Damrauer, Scott M.“…METHODS: This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37060“…RESULTS: A total of 21 RCTs involving 7571 participants were included for meta-analysis. The forest plots showed that there is significant effect in global cognitive function (15 RCTs, SMD: 0.36; 95 % CI: 0.18 to 0.54, P < 0.01) and Hcy (11 RCTs, MD: -4.59; 95 %CI: -5.51 to -3.67, P < 0.01), but there is no effect in information processing speed (10 RCTs, SMD: 0.06; 95 % CI: -0.12 to 0.25, P = 0.49), episodic memory (15 RCTs, SMD: 0.10; 95 % CI: -0.04 to 0.25, P = 0.16), executive function (11 RCTs, SMD: -0.21; 95 % CI: -0.49 to 0.06, P = 0.13). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto