Mostrando 37,041 - 37,060 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.47s Limitar resultados
  1. 37041
    “…A total of five AI algorithms, including four classical machine learning algorithms (logistic regression [LR], random forest [RF], extra trees [ET], and gradient boosting trees [GBT]) and a deep learning algorithm, which is a densely connected neural network (DNN), were developed and compared in this study. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37042
    por Muneeb, Muhammad, Henschel, Andreas
    Publicado 2021
    “…We used about 9 classifiers, RandomForest, Extreme Gradient boosting, ANN, LSTM, GRU, BILSTM, 1DCNN, ensembles of ANN, and ensembles of LSTM which gave the best accuracy of 0.91, 0.9286, 0.945, 0.94, 0.94, 0.92, 0.95, and 0.96% respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37043
    “…Feature importance analysis was performed with AdaBoost, random forest, and eXtreme Gradient Boosting (XGBoost); the AI model for predicting COVID-19 severity among patients was developed with a 5-layer deep neural network (DNN) with the 20 most important features, which were selected based on ranked feature importance analysis of 37 features from the comprehensive data set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37044
    “…Studies were classified into 10 categories as follows: (1) open flap debridement (OFD) alone versus OFD/PRF; (2) OFD/bone graft (OFD/BG) versus OFD/PRF; (3) OFD/BG versus OFD/BG/PRF; (4–6) OFD/barrier membrane (BM), OFD/PRP, or OFD/enamel matrix derivative (EMD) versus OFD/PRF; (7) OFD/EMD versus OFD/EMD/PRF; (8–10) OFD/PRF versus OFD/PRF/metformin, OFD/PRF/bisphosphonates, or OFD/PRF/statins. Weighted means and forest plots were calculated for probing depth (PD), clinical attachment level (CAL), and radiographic bone fill (RBF). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37045
  6. 37046
    “…With original Kinect skeleton data extracting and preprocessing, the proposed experiment demonstrated four strong machine learning tools: Support Vector Machine, Logistic Regression, Random Forest and Gradient Boosting. Using the precision, recall, sensitivity, specificity, roc-curve, confusion matrix et.al, indicators were calculated as the measurement of methods, which were commonly used to evaluate classification methodologies. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37047
    “…Next, the integrated classifier system Rotation Forest uses “support vector machine” subclassifications to divide three types of feature spaces into several subsets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37048
    “…Pooled prevalence was estimated using a random-effects model with a 95% confidence interval (CI) and depicted as a forest plot, while heterogeneity was evaluated using Cochran’s Q-test. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37049
    “…A radiomics biomarker was then built with the random survival forest method. The patients with nodules were divided into low-, middle- and high-risk subgroups by two biomarker cutoffs that optimized time-dependent sensitivity and specificity for decisions about diagnostic workup within 3 months and about repeat screening after 12 months, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37050
    “…The performance of this feature selection approach was compared to that of three other approaches, with the first two based on the Random Forest technique and the other on receiver operating characteristic curve analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37051
    “…Then, an ensemble classifier (EC) learning algorithm called EARN (Ensemble of Artificial Neural Network, Random Forest, and non-linear Support Vector Machine) is proposed to evaluate plausible driver genes for metastatic breast cancer (MBCA). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37052
    “…Classical statistical analysis revealed that treatment ineffectiveness seemed to be influenced by the male sex, which was not confirmed by the multivariate analysis using the machine learning algorithm (random forest). Coinfection with HBV (including patients with on-treatment reactivation of HBV infection) or HIV, extrahepatic manifestations, and renal failure did not significantly affect the treatment efficacy. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37053
    “…Machine learning algorithms (ie, random forest, support vector machine, Bayes generalized linear model, gradient boosting, and an ensemble of the individual methods) were used to identify search terms and patterns that correlate with changes in obesity and overweight prevalence across Africa. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37054
    “…With these input features, we evaluated the prediction performance of machine learning models, including random forest, decision trees, k-nearest neighbor, linear discriminant analysis, and adaptive boosting, and a deep neural network model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37055
    “…Univariate Cox regression analysis was used to select GPL-related genes with prognostic value. The Random forest algorithm, LASSO algorithm and PPI network were used to identify critical genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37056
  17. 37057
    “…Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37058
    “…We used an MLC model, based on the Random Forest (RF) technique, to leverage these correlations and predict four complications simultaneously. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37059
    “…METHODS: This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37060
    “…RESULTS: A total of 21 RCTs involving 7571 participants were included for meta-analysis. The forest plots showed that there is significant effect in global cognitive function (15 RCTs, SMD: 0.36; 95 % CI: 0.18 to 0.54, P < 0.01) and Hcy (11 RCTs, MD: -4.59; 95 %CI: -5.51 to -3.67, P < 0.01), but there is no effect in information processing speed (10 RCTs, SMD: 0.06; 95 % CI: -0.12 to 0.25, P = 0.49), episodic memory (15 RCTs, SMD: 0.10; 95 % CI: -0.04 to 0.25, P = 0.16), executive function (11 RCTs, SMD: -0.21; 95 % CI: -0.49 to 0.06, P = 0.13). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS