Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37081“…Machine learning algorithms, i.e. missForest and k-NN, were also found to lack robustness to small changes in the data or consecutive missingness. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37082por Mekonen, Seblework, Ambelu, Argaw, Wondafrash, Mekitie, Kolsteren, Patrick, Spanoghe, Pieter“…Strict regulations of the health-threatening pesticide by the regulatory body (Environment, Forest and Climate Change Commission) at the country and regional levels is advocated.…”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37083por Brendlin, Andreas Stefan, Peisen, Felix, Almansour, Haidara, Afat, Saif, Eigentler, Thomas, Amaral, Teresa, Faby, Sebastian, Calvarons, Adria Font, Nikolaou, Konstantin, Othman, Ahmed E“…For each combination (SECT/DECT and patient response/lesion response), an individual random forest classifier with 10-fold internal cross-validation was trained on the study cohort and tested on the validation cohort to confirm the predictive performance. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37084“…Mean difference (MD) with 95% CI was used to quantify the change in ARR and change in EDSS before and after treatment. A forest plot was prepared to indicate the efficacy and adverse effects outcomes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37085por Deng, ZhiBo, Wu, JiangPing, Tang, KaiYing, Shu, Han, Wang, Ting, Li, FuBing, Nie, Mao“…Effect sizes of outcome for each group were pooled using random-effects models; thereafter, the results were represented in the forest plots. RESULTS: Nine RCTs with 293 EM and 303 LM participants were identified and included in the study. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37086por Yodsheewan, Rungrueang, Sukmak, Manakorn, Sangkharak, Bencharong, Kaolim, Nongnid, Ploypan, Raveewan, Phongphaew, Wallaya“…These pangolins had been admitted to a regional Wildlife Quarantine Center for rehabilitation before release in the forest. Routine physical examinations were conducted on the animals. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37087“…Finally, we assessed the spatio-temporal concordance of fox digging and greater snow goose (Anser caerulescens antlanticus) nesting, to test the ecological relevance of our behavioural classification in a well-known study system dominated by top-down trophic interactions. RESULTS: The random forest model yielded the best behavioural classification, with accuracies for each behaviour over 96%. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37088“…Prediction models were built using decision tree (DT), random forest (RF), support vector machine (SVM), and LR, and their performances were evaluated using parameters of confusion matrix, receiver operating characteristics (ROC) curves, and k-fold cross-validation techniques. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37089por Brdar, Sanja, Panić, Marko, Hogeveen-van Echtelt, Esther, Mensink, Manon, Grbović, Željana, Woltering, Ernst, Chauhan, Aneesh“…Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based regression models were trained on the features derived from the hyperspectral data corresponding to each sepal in the training set and tested on hold out test set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37090por Perret, Jennifer L, Vicendese, Don, Simons, Koen, Jarvis, Debbie L, Lowe, Adrian J, Lodge, Caroline J, Bui, Dinh S, Tan, Daniel, Burgess, John A, Erbas, Bircan, Bickerstaffe, Adrian, Hancock, Kerry, Thompson, Bruce R, Hamilton, Garun S, Adams, Robert, Benke, Geza P, Thomas, Paul S, Frith, Peter, McDonald, Christine F, Blakely, Tony, Abramson, Michael J, Walters, E Haydn, Minelli, Cosetta, Dharmage, Shyamali C“…STATISTICAL METHOD: Risk-prediction models were developed using randomForest then externally validated. RESULTS: Area under the receiver operating characteristic curve (AUC(ROC)) of the final model was 80.8% (95% CI 80.0% to 81.6%), sensitivity 80.3% (77.7% to 82.9%), specificity 69.1% (68.7% to 69.5%), positive predictive value (PPV) 11.1% (10.3% to 11.9%) and negative predictive value (NPV) 98.7% (98.5% to 98.9%). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37091por Fotios, Bekris, Sotirios, Vasileiadis, Elena, Papadopoulou, Anastasios, Samaras, Stefanos, Testempasis, Danae, Gkizi, Georgia, Tavlaki, Aliki, Tzima, Epaminondas, Paplomatas, Emmanuel, Markakis, George, Karaoglanidis, Kalliope, Papadopoulou K., Dimitrios, Karpouzas G.“…Several fungal Amplicon Sequence Variants (ASVs), reported as GTD-associated pathogens like Kalmusia variispora, Fomitiporia spp., and Phaemoniella chlamydosporα (most dominant in our study), were positively correlated with symptomatic vines in a cultivar/viticultural zone dependent manner. Random Forest analysis pointed to P. chlamydosporα, K. variispora, A. alternata and Cladosporium sp., as highly accurate predictors of symptomatic vines (0% error rate). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37092por Nisbet, Euan G., Allen, Grant, Fisher, Rebecca E., France, James L., Lee, James D., Lowry, David, Andrade, Marcos F., Bannan, Thomas J., Barker, Patrick, Bateson, Prudence, Bauguitte, Stéphane J.-B., Bower, Keith N., Broderick, Tim J., Chibesakunda, Francis, Cain, Michelle, Cozens, Alice E., Daly, Michael C., Ganesan, Anita L., Jones, Anna E., Lambakasa, Musa, Lunt, Mark F., Mehra, Archit, Moreno, Isabel, Pasternak, Dominika, Palmer, Paul I., Percival, Carl J., Pitt, Joseph R., Riddle, Amber J., Rigby, Matthew, Shaw, Jacob T., Stell, Angharad C., Vaughan, Adam R., Warwick, Nicola J., E. Wilde, Shona“…In smoke from tropical C3 dry forest fires in Senegal, δ(13)C(CH(4)) values were around −28‰. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37093“…This study aims to apply different machine learning (ML) techniques, specifically, random forest (RF), functional network (FN), and adaptive neuro-fuzzy inference system (ANFIS), to predict the σ(h) and σ(H) using well-log data. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37094por Sushentsev, Nikita, Rundo, Leonardo, Blyuss, Oleg, Nazarenko, Tatiana, Suvorov, Aleksandr, Gnanapragasam, Vincent J, Sala, Evis, Barrett, Tristan“…T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong’s test. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37095por Ahn, Imjin, Gwon, Hansle, Kang, Heejun, Kim, Yunha, Seo, Hyeram, Choi, Heejung, Cho, Ha Na, Kim, Minkyoung, Jun, Tae Joon, Kim, Young-Hak“…Extreme gradient boosting, which was selected as the final model, accomplished an average area under the receiver operating characteristic curve score that was 0.865 higher than that of the other models (ie, logistic regression, random forest, support vector machine, and multilayer perceptron). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37096por Bista, Damber, Baxter, Greg S., Hudson, Nicholas J., Lama, Sonam Tashi, Weerman, Janno, Murray, Peter John“…Where connected habitat with high forest cover was scarce the animals moved more directly than when habitat was abundant. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37097por Cui, Junzhao, Yang, Jingyi, Zhang, Kun, Xu, Guodong, Zhao, Ruijie, Li, Xipeng, Liu, Luji, Zhu, Yipu, Zhou, Lixia, Yu, Ping, Xu, Lei, Li, Tong, Tian, Jing, Zhao, Pandi, Yuan, Si, Wang, Qisong, Guo, Li, Liu, Xiaoyun“…We developed four machine learning models [logistic regression (LR), regularized LR (RLR), support vector machine (SVM), and random forest (RF)], whose performance was internally validated using 5-fold cross-validation. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37098por Divers, Jasmin, Mohan, Sumit, Brown, W. Mark, Pastan, Stephen O., Israni, Ajay K., Gaston, Robert S., Bray, Robert, Islam, Shahidul, Sakhovskaya, Natalia V., Mena-Gutierrez, Alejandra M., Reeves-Daniel, Amber M., Julian, Bruce A., Freedman, Barry I.“…Four donor/recipient pair groups (DRP) were studied, AA/AA, AA/EA, EA/AA, and EA/EA. Survival random forests and Cox proportional hazard models were fitted to rank and evaluate modifying effects of DRP on variables associated with allograft survival. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37099por Pellegrini, Costanza, Xhepa, Erion, Ndrepepa, Gjin, Alvarez-Covarrubias, Hector, Kufner, Sebastian, Lahmann, Anna Lena, Rheude, Tobias, Rai, Himanshu, Mayr, N. Patrick, Schunkert, Heribert, Kastrati, Adnan, Joner, Michael, Cassese, Salvatore“…The performance of different antithrombotic regimens in terms of long-term clinical outcomes and bioprosthesis valve function requires further investigation. GRAPHIC ABSTRACT: Forest plots from pairwise and network meta-analyses associated with an antithrombotic therapy with or without clopidogrel Risk ratio for all outcomes of interest calculated with the pairwise meta-analysis (left side) and for main outcomes calculated with the network meta-analysis (right side) in patients allocated to an antithrombotic therapy with clopidogrel or without. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37100por Weidhaas, Joanne, Marco, Nicholas, Scheffler, Aaron W, Kalbasi, Anusha, Wilenius, Kirk, Rietdorf, Emily, Gill, Jaya, Heilig, Mara, Desler, Caroline, Chin, Robert K, Kaprealian, Tania, McCloskey, Susan, Raldow, Ann, Raja, Naga P, Kesari, Santosh, Carrillo, Jose, Drakaki, Alexandra, Scholz, Mark, Telesca, Donatello“…Trained classifiers included classification trees, LASSO-regularized logistic regression, boosted trees, and random forests. Final performance measures were reported on the training set using leave-one-out cross validation and validated on held-out samples. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto