Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37101por Kneepkens, Esther, Bakx, Nienke, van der Sangen, Maurice, Theuws, Jacqueline, van der Toorn, Peter-Paul, Rijkaart, Dorien, van der Leer, Jorien, van Nunen, Thérèse, Hagelaar, Els, Bluemink, Hanneke, Hurkmans, Coen“…The two models used were an in-house developed U-net model and a vendor-developed contextual atlas regression forest model (cARF). Radiation oncologists evaluated the clinical acceptability of each blinded plan and ranked plans according to preference. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37102por McGowan, Natasha E., Marks, Nikki J., Maule, Aaron G., Schmidt-Küntzel, Anne, Marker, Laurie L., Scantlebury, David M.“…Accelerometer data were temporally aligned with corresponding video footage and labelled with one of 17 behaviours. Six separate random forest models were run (three per device type) to determine the categorisation accuracy for behaviours at a fine, medium, and coarse resolution. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37103por Wang, Pan Pan, Song, Xin, Zhao, Xue Ke, Wei, Meng Xia, Gao, She Gan, Zhou, Fu You, Han, Xue Na, Xu, Rui Hua, Wang, Ran, Fan, Zong Min, Ren, Jing Li, Li, Xue Min, Wang, Xian Zeng, Yang, Miao Miao, Hu, Jing Feng, Zhong, Kan, Lei, Ling Ling, Li, Liu Yu, Chen, Yao, Chen, Ya Jie, Ji, Jia Jia, Yang, Yuan Ze, Li, Jia, Wang, Li Dong“…A predictive model of 15 metabolites [all-trans-13,14-dihydroretinol, (±)-myristylcarnitine, (2S,3S)-3-methylphenylalanine, 3-(pyrazol-1-yl)-L-alanine, carnitine C10:1, carnitine C10:1 isomer1, carnitine C14-OH, carnitine C16:2-OH, carnitine C9:1, formononetin, hyodeoxycholic acid, indole-3-carboxylic acid, PysoPE 20:3, PysoPE 20:3(2n isomer1), and resolvin E1] was developed by logistic regression after LASSO and random forest analysis. This model held high predictive accuracies on distinguishing ESCC from controls in the discovery and validation groups (accuracies > 89%). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37104“…The genetic classification models were established using support vector machine (SVM), random forest (RF) and logistic regression (LR), respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37105“…The present study aims to predict COVID-19 severity at admission by different machine learning techniques including random forest (RF), support vector machine (SVM), and logistic regression (LR). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37106por Quan, Ruilin, Huang, Shian, Pang, Lingpin, Shen, Jieyan, Wu, Weifeng, Tang, Fangming, Zhu, Xiulong, Su, Weiqing, Sun, Jingzhi, Yu, Zaixin, Wang, Lemin, Zhu, Xianyang, Xiong, Changming, He, Jianguo“…By L1-penalized regression model and random forest approach, diastolic pressure gradient (DPG) and mixed venous oxygen saturation (SvO(2)) were the hemodynamic predictors most strongly associated with mortality (coefficient: 0.0255 and -0.0176, respectively), with consistent significance after adjusted for SHFM [DPG: HR 1.067, 95% CI 1.024–1.113, P = 0.022; SvO(2): HR 0.969, 95% CI 0.953–0.985, P = 0.002] or MAGGIC (DPG: HR 1.069, 95% CI 1.026–1.114, P = 0.011; SvO(2): HR 0.970, 95% CI 0.954–0.986, P = 0.004) scores. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37107por Guo, Rui, Zhang, Yong-Hua, Zhang, Hua-Jie, Landis, Jacob B., Zhang, Xu, Wang, Heng-Chang, Yao, Xiao-Hong“…We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic–continental gradient and ‘oceanic’ adaptation. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37108por Tu, Hong, Feng, Jun, Yu, Chenghang, Lin, Kangming, Peiyu, Wang, Shaomi, Xiang, Lingyun, Luo, Jian, Li“…CONCLUSION: Health education focused on high-risk populations, such as migrant workers and forest goers, should be strengthened. Verbal communication and information transmission via the internet, radio, and mobile phone platforms may be required during the COVID-19 pandemic. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37109por Brumberger, Zachary L., Branch, Mary E., Klein, Max W, Seals, Austin, Shapiro, Michael D., Vasu, Sujethra“…METHODS: Medical records of patients who underwent immunotherapy with durvalumab, ipilimumab, nivolumab, and pembrolizumab at Wake Forest Baptist Health were reviewed. We collected retrospective data regarding sex, cancer type, age, and cardiovascular disease risk factors and medications. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37110por Ferrario, Andrea, Luo, Minxia, Polsinelli, Angelina J, Moseley, Suzanne A, Mehl, Matthias R, Yordanova, Kristina, Martin, Mike, Demiray, Burcu“…We trained machine learning models using random forest, extreme gradient boosting, and light gradient boosting machine algorithms, implementing repeated cross-validation with different numbers of folds and repeats and recursive feature elimination to avoid overfitting. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37111por Sharma, Roshi, Sharma, Yash Pal, Hashmi, Sayed Azhar Jawad, Kumar, Sanjeev, Manhas, Rajesh Kumar“…CONCLUSION: The inhabitants of district Jammu had good knowledge of WEM, but no documentation, lying of most of the information with elders and uneducated people, and destruction of forests and other natural habitats of WEM pose a serious threat of losing this valuable information in near future. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37112“…The results outperformed the common ensemble algorithms of AdaBoost, EasyEnsemble, and Random Forest (RF) as well as the single machine learning (ML) methods of logistic regression, decision tree, k nearest neighbors (KNN), back propagation neural network (BP) and SVM. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37113por Nagaraj, Yeshaswini, de Jonge, Gonda, Andreychenko, Anna, Presti, Gabriele, Fink, Matthias A., Pavlov, Nikolay, Quattrocchi, Carlo C., Morozov, Sergey, Veldhuis, Raymond, Oudkerk, Matthijs, van Ooijen, Peter M. A.“…We compared three machine learning models, logistic regression (LR), multilayer perceptron (MLP), and random forest (RF) for the automated CO-RADS classification. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37114por Safaei-Farouji, Majid, Hasannezhad, Meysam, Rahimzadeh Kivi, Iman, Hemmati-Sarapardeh, Abdolhossein“…For this purpose, five intelligent models of random forest (RF), extra tree (ET), Gaussian process regression (GPR), and the integration of adaptive neuro fuzzy inference system (ANFIS) with differential evolution (DE) and imperialist competitive algorithm (ICA) optimizers were implemented. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37115“…The ecological roles of bacteriophages in aquatic and forest environments have been widely explored, but those in agroecosystems remains limited. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37116por Uil, Sjoerd H., Coupé, Veerle M. H., Bril, Herman, Meijer, Gerrit A., Fijneman, Remond J. A., Stockmann, Hein B. A. C.“…Survival of the identified subgroups was analysed, and robustness of the selected CART variables was assessed by random forest analysis (1000 trees). RESULTS: In patients not treated with ACT, prognosis was estimated best based on expression of KCNQ1. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37117por Jørgensen, Terese Sara Høj, Allore, Heather, Elman, Miriam R., Nagel, Corey, Quiñones, Ana R.“…Conditional inference random forests were used to rank the importance of chronic conditions in predicting hospitalization and potentially avoidable hospitalization separately for NH White and NH Black beneficiaries. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37118“…(in J Evol Biol 26:1866–1874, 2013) report, our results indicate that no statistically significant pattern of phylogenetic covariation exists in our Trithemis forewing and hindwing data and that both male and female wing datasets exhibit substantial shape differences between species that inhabit open and forested landscapes and species that hunt over temporary/standing or running water bodies. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37119por Todd, Christopher M., Westcott, David A., Martin, John M., Rose, Karrie, McKeown, Adam, Hall, Jane, Welbergen, Justin A.“…This information is also useful for understanding the potential long-term consequences for forest dynamics resulting from population declines or extinction, and so can aid in the development of evidence-based ecological management strategies. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37120por Jung, Christian, Mamandipoor, Behrooz, Fjølner, Jesper, Bruno, Raphael Romano, Wernly, Bernhard, Artigas, Antonio, Bollen Pinto, Bernardo, Schefold, Joerg C, Wolff, Georg, Kelm, Malte, Beil, Michael, Sviri, Sigal, van Heerden, Peter V, Szczeklik, Wojciech, Czuczwar, Miroslaw, Elhadi, Muhammed, Joannidis, Michael, Oeyen, Sandra, Zafeiridis, Tilemachos, Marsh, Brian, Andersen, Finn H, Moreno, Rui, Cecconi, Maurizio, Leaver, Susannah, De Lange, Dylan W, Guidet, Bertrand, Flaatten, Hans, Osmani, Venet“…Different models based on the Sequential Organ Failure Assessment (SOFA) score, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB) were derived as baseline models that included admission variables only. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto