Mostrando 37,221 - 37,240 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.25s Limitar resultados
  1. 37221
    “…Initial niche models inferred that only two of ten genera have distinct niche spaces; however, the application of machine learning-based random forest models suggests genus-specific variation in the relevance of abiotic environmental variables used to predict jellyfish occurrence. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37222
    “…The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37223
    “…Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37224
    por Wu, Kuan, Miu, Xiaoyan, Wang, Hui, Li, Xiadong
    Publicado 2023
    “…To achieve the best prediction performance, a Bayesian optimization based multi-parameter tuning technology was adopted for the AdaBoost, random forest (RF), decision tree (DT), gradient boosting (GB) and extra tree (XTree) five machine learning models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37225
    “…Methods: In this study, we apply a random forest survival model to the SEER-Oncotype cohort data (Surveillance, Epidemiology, and End Results with Oncotype DX test information for breast cancer patients) and determine chemotherapy benefit thresholds in early-stage, estrogen-receptor-positive (ER+), and HER2-negative (HER2−) patients of different races. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37226
    “…For each study identified, study design, methods, and VE estimates for infection, hospitalization, and/or death were extracted and summarized via forest plots. We then applied methods identified in the literature to a single dataset from Michigan Medicine (MM), providing a comparison of the impact of different statistical methodologies on the same dataset. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37227
    “…We constructed and compared random forest (RF) and support vector machine (SVM) models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37228
    “…The ensemble regressor (containing Random Forest, Gradient Boosting, and Support Vector Machine learners) produced the best model, with Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.91 [95% CI (0.88, 0.94)] and Average Precision (AP) of 0.59 [0.51, 0.69] for mortality, and decreased performance predicting simultaneous mortality and morbidity (0.83 [0.80, 0.86] and 0.59 [0.51, 0.64]); at a set specificity of 0.995, positive predictive value (PPV) was 0.79 for mortality, and 0.88 for mortality and morbidity. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37229
  10. 37230
    “…ANALYTICAL APPROACH: Machine-learning models were developed using random forest survival methods, with laboratory-based risk factors analyzed as potential predictors of significant eGFR decline. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37231
    “…Various prediction models were built using random forest (RF) classifier within a threefold cross-validation framework leveraging baseline radiomics (C(br) ), baseline radiomics + baseline clinical (C(brbcl) ), delta radiomics (C(Δr) ), delta radiomics + baseline clinical (C(Δrbcl) ), and delta radiomics + delta clinical (C(ΔrΔcl) ). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37232
    “…ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver operating characteristic (ROC) analysis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37233
    “…Cuproptosis signature genes were screened by random forest (RF) and support vector machine (SVM). A nomogram was developed based on cuproptosis signature genes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37234
    por Tian, Yujia, Zhang, Zhixing, Yan, Aixia
    Publicado 2023
    “…Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37235
    por Zhang, Yifan, Wu, Jin, He, Jian, Xu, Shanshan
    Publicado 2023
    “…A total of 1,218 radiomics features were computationally extracted from the enhanced computed tomography (CT) scans of the tumor region, and a radiomics signature was established by the random forest algorithm. In the development cohort, multi- and binary-class radiomics models integrating preoperative variables and radiomics features were constructed to distinguish between the 3 types of PCNs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37236
    “…After extracting PET/CT features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37237
    por Zheng, Boming, Lin, Xijie, Qi, Xinhua
    Publicado 2023
    “…The probability of wild boar incidents decreased with an increase in the distance from cultivated and forested land, and increased sharply and then levelled off with an increase in the GDP index. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37238
    “…In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37239
    “…The discriminative power of the multi-omics signature and their regulators was delineated by training a random forest classifier using 55 samples, by employing a 10-fold cross validation with five iterations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37240
    “…We used the risk factors for SSI obtained from univariate analysis to develop 5 sets of models using the following machine learning (ML) methods: Decision Tree (DC), Random Forest (RF), Neural Network (NN), Gradient Boosting (GB), and Adaboost. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS