Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37221por Anthony, Colin Jeffrey, Tan, Kei Chloe, Pitt, Kylie Anne, Bentlage, Bastian, Ames, Cheryl Lewis“…Initial niche models inferred that only two of ten genera have distinct niche spaces; however, the application of machine learning-based random forest models suggests genus-specific variation in the relevance of abiotic environmental variables used to predict jellyfish occurrence. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37222por Laqua, Fabian Christopher, Woznicki, Piotr, Bley, Thorsten A., Schöneck, Mirjam, Rinneburger, Miriam, Weisthoff, Mathilda, Schmidt, Matthias, Persigehl, Thorsten, Iuga, Andra-Iza, Baeßler, Bettina“…The area under the receiver operating characteristic curve (AUC) ranged from 0.79 to 0.87, and the scaled Brier score (SBS) ranged from 16 to 36%. The random forest model (iii) yielded the best results [AUC 0.871 (0.865–0.878), SBS 35.8 (34.2–37.2)] and had significantly higher model performance than both approaches alone (AUC: p < 0.001, z = 8.8 and z = 22.4; SBS: p < 0.001, z = 11.4 and z = 26.6, against (i) and (ii), respectively). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37223por Xiong, Haizheng, Chen, Yilin, Pan, Yong-Bao, Wang, Jinshe, Lu, Weiguo, Shi, Ainong“…Then five genomic selection (GS) models, including Ridge regression best linear unbiased predictor (rrBLUP), Genomic best linear unbiased predictor (gBLUP), Bayesian least absolute shrinkage and selection operator (Bayesian LASSO), Random Forest (RF), and Support vector machines (SVM), were used to predict breeding values of SBR resistance using whole genome SNP sets and GWAS-based marker sets. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37224“…To achieve the best prediction performance, a Bayesian optimization based multi-parameter tuning technology was adopted for the AdaBoost, random forest (RF), decision tree (DT), gradient boosting (GB) and extra tree (XTree) five machine learning models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37225“…Methods: In this study, we apply a random forest survival model to the SEER-Oncotype cohort data (Surveillance, Epidemiology, and End Results with Oncotype DX test information for breast cancer patients) and determine chemotherapy benefit thresholds in early-stage, estrogen-receptor-positive (ER+), and HER2-negative (HER2−) patients of different races. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37226por Meah, Sabir, Shi, Xu, Fritsche, Lars G., Salvatore, Maxwell, Wagner, Abram, Martin, Emily T., Mukherjee, Bhramar“…For each study identified, study design, methods, and VE estimates for infection, hospitalization, and/or death were extracted and summarized via forest plots. We then applied methods identified in the literature to a single dataset from Michigan Medicine (MM), providing a comparison of the impact of different statistical methodologies on the same dataset. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37227“…We constructed and compared random forest (RF) and support vector machine (SVM) models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37228por Munjal, Neil K., Clark, Robert S. B., Simon, Dennis W., Kochanek, Patrick M., Horvat, Christopher M.“…The ensemble regressor (containing Random Forest, Gradient Boosting, and Support Vector Machine learners) produced the best model, with Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.91 [95% CI (0.88, 0.94)] and Average Precision (AP) of 0.59 [0.51, 0.69] for mortality, and decreased performance predicting simultaneous mortality and morbidity (0.83 [0.80, 0.86] and 0.59 [0.51, 0.64]); at a set specificity of 0.995, positive predictive value (PPV) was 0.79 for mortality, and 0.88 for mortality and morbidity. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37229por Young, Tim, Laroche, Olivier, Walker, Seumas P., Miller, Matthew R., Casanovas, Paula, Steiner, Konstanze, Esmaeili, Noah, Zhao, Ruixiang, Bowman, John P., Wilson, Richard, Bridle, Andrew, Carter, Chris G., Nowak, Barbara F., Alfaro, Andrea C., Symonds, Jane E.“…Single- and multi-layer random forest (RF) regression models showed that integration of all data layers provide greater FE prediction power than any single-layer model alone. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37230por Aoki, Joseph, Kaya, Cihan, Khalid, Omar, Kothari, Tarush, Silberman, Mark A., Skordis, Con, Hughes, Jonathan, Hussong, Jerry, Salama, Mohamed E.“…ANALYTICAL APPROACH: Machine-learning models were developed using random forest survival methods, with laboratory-based risk factors analyzed as potential predictors of significant eGFR decline. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37231por Midya, Abhishek, Hiremath, Amogh, Huber, Jacob, Sankar Viswanathan, Vidya, Omil-Lima, Danly, Mahran, Amr, Bittencourt, Leonardo K., Harsha Tirumani, Sree, Ponsky, Lee, Shiradkar, Rakesh, Madabhushi, Anant“…Various prediction models were built using random forest (RF) classifier within a threefold cross-validation framework leveraging baseline radiomics (C(br) ), baseline radiomics + baseline clinical (C(brbcl) ), delta radiomics (C(Δr) ), delta radiomics + baseline clinical (C(Δrbcl) ), and delta radiomics + delta clinical (C(ΔrΔcl) ). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37232por Qiao, Xiaofeng, Gu, Xiling, Liu, Yunfan, Shu, Xin, Ai, Guangyong, Qian, Shuang, Liu, Li, He, Xiaojing, Zhang, Jingjing“…ML models for predicting Ki67 expression and GGG were constructed based on bpMRI and different algorithms, including logistic regression (LR), support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN). The performances of different models were evaluated with receiver operating characteristic (ROC) analysis. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37233por Nong, Jiao, Lu, Guanyu, Huang, Yue, Liu, Jinfu, Chen, Lihua, Pan, Haida, Xiong, Bo“…Cuproptosis signature genes were screened by random forest (RF) and support vector machine (SVM). A nomogram was developed based on cuproptosis signature genes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37234“…Furthermore, we employed four supervised machine learning algorithms, including support vector machine (SVM), random forest (RF), deep neural networks (DNNs), and eXtreme Gradient Boosting (XGBoost), as well as ensemble learning, to establish 640 classification models and 160 regression models for COX-2 and mPGES-1 inhibitors. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37235Preoperative differentiation of pancreatic cystic neoplasm subtypes on computed tomography radiomics“…A total of 1,218 radiomics features were computationally extracted from the enhanced computed tomography (CT) scans of the tumor region, and a radiomics signature was established by the random forest algorithm. In the development cohort, multi- and binary-class radiomics models integrating preoperative variables and radiomics features were constructed to distinguish between the 3 types of PCNs. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37236por Zhou, Shizhao, Sun, Dazhen, Mao, Wujian, Liu, Yu, Cen, Wei, Ye, Lechi, Liang, Fei, Xu, Jianmin, Shi, Hongcheng, Ji, Yuan, Wang, Lisheng, Chang, Wenju“…After extracting PET/CT features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37237“…The probability of wild boar incidents decreased with an increase in the distance from cultivated and forested land, and increased sharply and then levelled off with an increase in the GDP index. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37238por Saha, Mrinal, Deb, Aparna, Sultan, Imtiaz, Paul, Sujat, Ahmed, Jishan, Saha, Goutam“…In the machine learning part of the analysis, this study utilizes supervised learning algorithms, specifically Linear Regression (LR) and Random Forest (RF). To optimize the hyperparameters of the RF model and mitigate the risk of overfitting given the small dataset, a 3-Fold cross-validation strategy is implemented. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37239por Martin-Hernandez, Roberto, Espeso-Gil, Sergio, Domingo, Clara, Latorre, Pablo, Hervas, Sergi, Hernandez Mora, Jose Ramon, Kotelnikova, Ekaterina“…The discriminative power of the multi-omics signature and their regulators was delineated by training a random forest classifier using 55 samples, by employing a 10-fold cross validation with five iterations. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37240por Nassour, Nour, Tatara, Alexander M, Jones, Sumner V, Leatherman, Hadley, DiGiovanni, William, Ashkani-Esfahani, Soheil, Nelson, Sandra B“…We used the risk factors for SSI obtained from univariate analysis to develop 5 sets of models using the following machine learning (ML) methods: Decision Tree (DC), Random Forest (RF), Neural Network (NN), Gradient Boosting (GB), and Adaboost. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto