Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37321por Mortani Barbosa, Eduardo J., Georgescu, Bogdan, Chaganti, Shikha, Aleman, Gorka Bastarrika, Cabrero, Jordi Broncano, Chabin, Guillaume, Flohr, Thomas, Grenier, Philippe, Grbic, Sasa, Gupta, Nakul, Mellot, François, Nicolaou, Savvas, Re, Thomas, Sanelli, Pina, Sauter, Alexander W., Yoo, Youngjin, Ziebandt, Valentin, Comaniciu, Dorin“…A metric-based approach for the classification of COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning–based classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution of airspace opacities. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37322por Perchard, Reena, Garner, Terence, Whatmore, Andrew James, Stevens, Adam, Higgins, Lucy, Johnstone, Edward, Clayton, Peter Ellis“…Uterine artery Doppler (UtAD) notching was assigned a rank (0=absent, 1=unilateral, 2=bilateral). Random forest (RF) is a machine learning approach that generates many independent, uncorrelated decision trees based on multiple variables. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37323“…Single-arm meta-analyses were conducted for IVMP using the DerSimonian-Laird random-effects models and forest plots were generated. Pooled means and corresponding 95% confidence intervals (CIs) were calculated. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37324“…Controls included random people 60 years and above or similar aged individuals who queried for one of eight control conditions: myocardial infarction, atrial fibrillation, hypertension, migraine, B12 deficiency, depression, hypothyroidism and surgery. We used a random forest model with 1000 trees to distinguish the patient cohort from each of the control cohorts. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37325“…A heterogeneity analysis was performed, forest plot made to summarize the results of the individual studies, and albatross plot made to allow the P values to be interpreted in the context of the study sample size. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37326por Connell, Shea P., Mills, Robert, Pandha, Hardev, Morgan, Richard, Cooper, Colin S., Clark, Jeremy, Brewer, Daniel S.“…A previously described robust feature selection framework incorporating bootstrap resampling and permutation was applied to the data to generate an optimal feature set for use in Random Forest models for prediction. The fully integrated model was named ExoGrail, and the out-of-bag predictions were used to evaluate the diagnostic potential of the risk model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37327por Yang, Yuan-Chi, Al-Garadi, Mohammed Ali, Bremer, Whitney, Zhu, Jane M, Grande, David, Sarker, Abeed“…Using the manually labeled data, we trained and evaluated several supervised learning algorithms, including support vector machine, random forest (RF), naïve Bayes, shallow neural network (NN), k-nearest neighbor, bidirectional long short-term memory, and bidirectional encoder representations from transformers (BERT). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37328por Herrin, Jeph, Abraham, Neena S., Yao, Xiaoxi, Noseworthy, Peter A., Inselman, Jonathan, Shah, Nilay D., Ngufor, Che“…The development cohort was used to train 3 machine learning models to predict GIB at 6 and 12 months: regularized Cox proportional hazards regression (RegCox), random survival forests (RSF), and extreme gradient boosting (XGBoost). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37329por Patterson, Bruce K., Guevara-Coto, Jose, Yogendra, Ram, Francisco, Edgar B., Long, Emily, Pise, Amruta, Rodrigues, Hallison, Parikh, Purvi, Mora, Javier, Mora-Rodríguez, Rodrigo A.“…With a balanced working dataset, we constructed 3 random forest classifiers: a multi-class predictor, a Severe disease group binary classifier and a PASC binary classifier. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37330por Davison, C., Bowen, J.M., Michie, C., Rooke, J.A., Jonsson, N., Andonovic, I., Tachtatzis, C., Gilroy, M., Duthie, C-A.“…Four modelling techniques to predict individual animal intake were examined, based on (i) individual animal TOTFEEDTIME relative expressed as a proportion of the dietary group (GRP) and total GRP intake, (ii) multiple linear regression (REG) (iii) random forests (RF) and (iv) support vector regressor (SVR). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37331por Palmer, Kelly N. B., Rivers, Patrick S., Melton, Forest L., McClelland, D. Jean, Hatcher, Jennifer, Marrero, David G., Thomson, Cynthia A., Garcia, David O.Enlace del recurso
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37332“…Our ML algorithms contained decision tree, random forest, naive Bayes, and logistic regression with least absolute shrinkage and selection operator. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37333por Stewart, Jonathon, Lu, Juan, Goudie, Adrian, Bennamoun, Mohammed, Sprivulis, Peter, Sanfillipo, Frank, Dwivedi, Girish“…The most common machine learning methods used were artificial neural networks (14 studies), random forest (6 studies), support vector machine (5 studies), and gradient boosting (2 studies). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37334“…In analysis of the recognition angle, the kNN classifier and Random Forest classifier achieved the highest average prediction accuracy on the data set established from the sound signals filtered by Wiener filtering, which were 88.83% and 88.69%, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37335por Wansom, Tanyaporn, Muangnoicharoen, Sant, Nitayaphan, Sorachai, Kitsiripornchai, Suchai, Crowell, Trevor A., Francisco, Leilani, Gilbert, Paileen, Rwakasyaguri, Dixion, Dhitavat, Jittima, Li, Qun, King, David, Robb, Merlin L., Smith, Kirsten, Heger, Elizabeth A., Akapirat, Siriwat, Pitisuttithum, Punnee, O'Connell, Robert J., Vasan, Sandhya“…We utilized Poisson regression to calculate HIV incidence rates. A survival random forest model identified the most predictive risk factors for HIV sero-conversion and then used in a survival regression tree model to elucidate hazard ratios for individuals with groups of selected risk factors. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37336por Nielson, Carrie M., Bylsma, Lauren C., Fryzek, Jon P., Saad, Hossam A., Crawford, Jeffrey“…Meta‐analyses were conducted to quantify the association between RDI levels and overall survival (OS) among studies reporting a hazard ratio (HR) for OS by similar tumor types, regimens, and RDI. Forest plots represented summary HR and 95% confidence interval (CI); Cochran's Q and I(2) tests evaluated study heterogeneity. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37337por Nguyen, Nam Nhat, Huynh, Linh Ba Phuong, Do, Minh Duc, Yang, Tien Yun, Tsai, Meng-Che, Chen, Yang-Ching“…The mean, standard deviation, sensitivity, and specificity of each parameter were documented. Forest plots were constructed to display the estimated standardized mean differences (SMDs) from each included study and the overall calculations. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37338por Xayalath, Somsy, Novotni-Dankó, Gabriella, Balogh, Péter, Brüssow, Klaus-Peter, Rátky, József“…More than 54 % of farmers did not keep sows in pens before the farrowing, and 53 % of sows gave birth near forests. In conclusion, the village locations and rearing systems did not influence the reproductive performance of indigenous pigs in northern Laos. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37339por Santucci, Domiziana, Faiella, Eliodoro, Cordelli, Ermanno, Calabrese, Alessandro, Landi, Roberta, de Felice, Carlo, Beomonte Zobel, Bruno, Grasso, Rosario Francesco, Iannello, Giulio, Soda, Paolo“…Main radiomics features were extracted and selected using a wrapper selection method. A Random Forest type classifier was trained to measure the performance of predicting histological factors using semantic features (patient data and MRI features) alone and semantic features associated with edema radiomics features. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37340por Wilairatana, Polrat, Masangkay, Frederick Ramirez, Kotepui, Kwuntida Uthaisar, Milanez, Giovanni De Jesus, Kotepui, Manas“…The pooled prevalence of Plasmodium spp. infection among patients infected with COVID-19 was estimated using the random effect model and then graphically presented as forest plots. The heterogeneity among the included studies was assessed using Cochrane Q and I(2) statistics. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto