Mostrando 37,321 - 37,340 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.44s Limitar resultados
  1. 37321
    “…A metric-based approach for the classification of COVID-19 used interpretable features, relying on logistic regression and random forests. A deep learning–based classifier differentiated COVID-19 via 3D features extracted directly from CT attenuation and probability distribution of airspace opacities. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37322
    “…Uterine artery Doppler (UtAD) notching was assigned a rank (0=absent, 1=unilateral, 2=bilateral). Random forest (RF) is a machine learning approach that generates many independent, uncorrelated decision trees based on multiple variables. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37323
    “…Single-arm meta-analyses were conducted for IVMP using the DerSimonian-Laird random-effects models and forest plots were generated. Pooled means and corresponding 95% confidence intervals (CIs) were calculated. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37324
    “…Controls included random people 60 years and above or similar aged individuals who queried for one of eight control conditions: myocardial infarction, atrial fibrillation, hypertension, migraine, B12 deficiency, depression, hypothyroidism and surgery. We used a random forest model with 1000 trees to distinguish the patient cohort from each of the control cohorts. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37325
    “…A heterogeneity analysis was performed, forest plot made to summarize the results of the individual studies, and albatross plot made to allow the P values to be interpreted in the context of the study sample size. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37326
    “…A previously described robust feature selection framework incorporating bootstrap resampling and permutation was applied to the data to generate an optimal feature set for use in Random Forest models for prediction. The fully integrated model was named ExoGrail, and the out-of-bag predictions were used to evaluate the diagnostic potential of the risk model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37327
    “…Using the manually labeled data, we trained and evaluated several supervised learning algorithms, including support vector machine, random forest (RF), naïve Bayes, shallow neural network (NN), k-nearest neighbor, bidirectional long short-term memory, and bidirectional encoder representations from transformers (BERT). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37328
    “…The development cohort was used to train 3 machine learning models to predict GIB at 6 and 12 months: regularized Cox proportional hazards regression (RegCox), random survival forests (RSF), and extreme gradient boosting (XGBoost). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37329
    “…With a balanced working dataset, we constructed 3 random forest classifiers: a multi-class predictor, a Severe disease group binary classifier and a PASC binary classifier. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37330
    “…Four modelling techniques to predict individual animal intake were examined, based on (i) individual animal TOTFEEDTIME relative expressed as a proportion of the dietary group (GRP) and total GRP intake, (ii) multiple linear regression (REG) (iii) random forests (RF) and (iv) support vector regressor (SVR). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37331
  12. 37332
    “…Our ML algorithms contained decision tree, random forest, naive Bayes, and logistic regression with least absolute shrinkage and selection operator. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37333
    “…The most common machine learning methods used were artificial neural networks (14 studies), random forest (6 studies), support vector machine (5 studies), and gradient boosting (2 studies). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37334
    “…In analysis of the recognition angle, the kNN classifier and Random Forest classifier achieved the highest average prediction accuracy on the data set established from the sound signals filtered by Wiener filtering, which were 88.83% and 88.69%, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37335
    “…We utilized Poisson regression to calculate HIV incidence rates. A survival random forest model identified the most predictive risk factors for HIV sero-conversion and then used in a survival regression tree model to elucidate hazard ratios for individuals with groups of selected risk factors. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37336
    “…Meta‐analyses were conducted to quantify the association between RDI levels and overall survival (OS) among studies reporting a hazard ratio (HR) for OS by similar tumor types, regimens, and RDI. Forest plots represented summary HR and 95% confidence interval (CI); Cochran's Q and I(2) tests evaluated study heterogeneity. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37337
    “…The mean, standard deviation, sensitivity, and specificity of each parameter were documented. Forest plots were constructed to display the estimated standardized mean differences (SMDs) from each included study and the overall calculations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37338
    “…More than 54 % of farmers did not keep sows in pens before the farrowing, and 53 % of sows gave birth near forests. In conclusion, the village locations and rearing systems did not influence the reproductive performance of indigenous pigs in northern Laos. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37339
    “…Main radiomics features were extracted and selected using a wrapper selection method. A Random Forest type classifier was trained to measure the performance of predicting histological factors using semantic features (patient data and MRI features) alone and semantic features associated with edema radiomics features. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37340
    “…The pooled prevalence of Plasmodium spp. infection among patients infected with COVID-19 was estimated using the random effect model and then graphically presented as forest plots. The heterogeneity among the included studies was assessed using Cochrane Q and I(2) statistics. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS