Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37381por Packialakshmi, Mohan, Palani Divya, Muthusamy, Baranidharan, Krishnamoorthy, Geetha, Seshadri, Nalliappan Ganesan, Kalipatty, Vijayabhama, Manickam, Manivasakan, Srinivasan, Hemalatha, Palanivel, Radha, Palaniswamy, Tilak, Meenakshisundaram, Priyanka, Venugopal, Krishnamoorthi, Settu, Vinothini, Balasubramaniam, Yuvraj Zende, Jayesh, Balu Rajput, Nikhil“…Due to the lack of availability of fodder inside the forest, the elephants move out of their habitat areas and also find agricultural crops attractive, which further results in man–animal conflict. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37382por Baxter-Gilbert, James, Riley, Julia L., Wagener, Carla, Baider, Cláudia, Florens, F. B. Vincent, Kowalski, Peter, Campbell, May, Measey, John“…Climbing ability, however, did appear to originate within the urban-native range and was maintained within the invasive populations, thereby suggesting it may have been a prior adaptation that provided this species with an advantage during its establishment in urban areas and spread into natural forests. We discuss how this shift in climbing performance may be ecologically related to the success of urban and invasive guttural toad populations, as well as how it may have impacted other island-derived morphological and performance phenotypes.…”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37383“…We developed prediction models using the deep feedforward neural network (DFNN) methods, as well as models using nine other machine learning methods, including naïve Bayes (NB), logistic regression (LR), support vector machine (SVM), LASSO, decision tree (DT), k-nearest neighbor (KNN), random forest (RF), AdaBoost (ADB), and XGBoost (XGB). We used grid search to tune hyperparameters for all methods. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37384por de Macêdo Filho, Leonardo J. M., Diógenes, Ana Vitória G., Barreto, Esther G., Pahwa, Bhavya, Samson, Susan L., Chaichana, Kaisorn, Quinones-Hinojosa, Alfredo, Almeida, Joao Paulo“…This invasion rate increased in frequency with higher Knosp Grade. The forest plot of persistent disease vs. remission in this surgery approach showed a p < 0.00001 and heterogeneity (I^2 = 0%). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37385por Patel, Urvish K, Mehta, Neev, Patel, Amrapali, Patel, Neel, Ortiz, Juan Fernando, Khurana, Mahika, Urhoghide, Eseosa, Parulekar, Akshada, Bhriguvanshi, Arpita, Patel, Nidhi, Mistry, Anuja Mahesh, Patel, Rutul, Arumaithurai, Kogulavadanan, Shah, Shamik“…The odds ratio (OR) and 95% confidence interval (CI) were obtained and forest plots were created using random effects models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37386“…Relatively higher Glossina pallidipes and biting flies, respectively, were caught in a wood-grass land (15.87 F/T/D and 3.69 F/T/D) and riverine forest (15.13 F/T/D and 3.42 F/T/D) than bush land vegetation types (13.87 F/T/D and 1.76 F/T/D). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37387por Zhou, Tianyang, Yang, Mengting, Wang, Mijia, Han, Linlin, Chen, Hong, Wu, Nan, Wang, Shan, Wang, Xinyi, Zhang, Yuting, Cui, Di, Jin, Feng, Qin, Pan, Wang, Jia“…In machine learning, data were trained and validated by random forest (RF) following Pycharm software and five-fold cross-validation analysis. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37388“…Equally, nests were searched in natural habitats counting riparian trees, forests, and ornamental trees, and in orchards based on the Common Birds Census (CBC) methodology, in which the singing doves, mating pairs, nesting, and/or feeding behavior were the most monitored signs to discover nests. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37389por Harrison, Nicholas E., Favot, Mark J., Gowland, Laura, Lenning, Jacob, Henry, Sarah, Gupta, Sushane, Abidov, Aiden, Levy, Phillip, Ehrman, Robert“…Full (STRATIFY + POCecho variable) and reduced (STRATIFY alone) logistic regression models were fit to calculate adjusted odds ratios (aOR), category‐free net reclassification index (NRI(cont)), ΔSensitivity (NRI(events)), and ΔSpecificity (NRI(nonevents)). Random forest assessed variable importance. To benchmark risk prediction to standard of care, ΔSensitivity and ΔSpecificity were evaluated at risk thresholds more conservative/lower than the actual outcome rate in discharged patients. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37390por Ali, Ahmed Shebl, Sheikh, Daniya, Chandler, Thomas R., Furmanek, Stephen, Huang, Jiapeng, Ramirez, Julio A., Arnold, Forest, Cavallazzi, RodrigoEnlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37391por Pretzsch, Elise, Heinemann, Volker, Stintzing, Sebastian, Bender, Andreas, Chen, Shuo, Holch, Julian Walter, Hofmann, Felix Oliver, Ren, Haoyu, Bösch, Florian, Küchenhoff, Helmut, Werner, Jens, Angele, Martin Konrad“…In addition to baseline models (Kaplan Meier (KM), (regularised) Cox), Random Survival Forest (RSF), and gradient boosted trees (GBT) were fit to the data. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37392por Shanks, Carly M., Huang, Ji, Cheng, Chia-Yi, Shih, Hung-Jui S., Brooks, Matthew D., Alvarez, José M., Araus, Viviana, Swift, Joseph, Henry, Amelia, Coruzzi, Gloria M.“…Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37393por Tankyevych, Olena, Trousset, Flora, Latappy, Claire, Berraho, Moran, Dutilh, Julien, Tasu, Jean Pierre, Lamour, Corinne, Cheze Le Rest, Catherine“…Seven multivariate models with different combinations of CP and radiomics were trained on a subset of patients (75%) using least absolute shrinkage, selection operator (LASSO) and random forest classification with 10-fold cross-validation to predict outcome. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37394“…Review Manager version 5.4 was used to generate odds ratios and forest plots with subgroup analysis from allele and phenotype frequency data. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37395por Cyr, Samuel, Marcil, Marie-Joelle, Houchi, Cylia, Marin, Marie-France, Rosa, Camille, Tardif, Jean-Claude, Guay, Stéphane, Guertin, Marie-Claude, Genest, Christine, Forest, Jacques, Lavoie, Patrick, Labrosse, Mélanie, Vadeboncoeur, Alain, Selcer, Shaun, Ducharme, Simon, Brouillette, JudithEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37396“…We identify the most important air pollutants influencing the air quality of Kolkata during three different periods using Random Forest, a tree-based machine learning (ML) algorithm. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37397por Bandargal, Saruchi, Chen, Tanya, Pusztaszeri, Marc Philippe, Forest, Véronique-Isabelle, da Silva, Sabrina Daniela, Payne, Richard J.Enlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37398por Maito, Marcelo Adrián, Santamaría-García, Hernando, Moguilner, Sebastián, Possin, Katherine L., Godoy, María E., Avila-Funes, José Alberto, Behrens, María I., Brusco, Ignacio L., Bruno, Martín A., Cardona, Juan F., Custodio, Nilton, García, Adolfo M., Javandel, Shireen, Lopera, Francisco, Matallana, Diana L., Miller, Bruce, Okada de Oliveira, Maira, Pina-Escudero, Stefanie D., Slachevsky, Andrea, Sosa Ortiz, Ana L., Takada, Leonel T., Tagliazuchi, Enzo, Valcour, Victor, Yokoyama, Jennifer S., Ibañez, Agustín“…FINDINGS: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37399por Mellinger, Taylor J., Forester, Brent P., Vogeli, Christine, Donelan, Karen, Gulla, Joy, Vetter, Michael, Vienneau, Maryann, Ritchie, Christine S.Enlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37400“…A protein-protein interaction (PPI) network was also constructed for the DE-mRNAs to identify candidate genes, and the receiver operating characteristic curves of the 21 candidate genes were plotted to evaluate the diagnostic value of the candidate genes for HIRI. A random forest (RF) model, support vector machine model and generalized linear model were constructed based on the candidate genes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto