Mostrando 37,401 - 37,420 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.98s Limitar resultados
  1. 37401
    “…Python was used to model machine learning algorithms. Random forest, logistic regression, multilayer perceptron, Catboost, Xgboost, and Naive Bayes methods were used for classification. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37402
    “…Nine clinical and laboratory factors were used to construct the classifier using a random forest machine-learning algorithm. CanICU had 96% sensitivity/73% specificity with the area under the receiver operating characteristic (AUROC) of 0.94 for 28-day, showing better performance than current prognostic models, including the Acute Physiology and Chronic Health Evaluation (APACHE) or Sequential Organ Failure Assessment (SOFA) score. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37403
    “…As a means to minimize subjectivity in ODR responses, machine learning algorithms, including K-nearest neighbor (KNN), random forest classifier (RFC), and support vector machine (SVM), predicted the ODR using body mass index (BMI), HR, EER, and EMG at high accuracies of 87–97%, with RFC being the most accurate. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37404
    por Chen, Min, Tan, Xuan, Padman, Rema
    Publicado 2023
    “…We compared the algorithm performance and feature importance measures of the ML models (ie, gradient boosting machine and random forest) with those of the logistic regression model based on 3 sets of predictors. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37405
    “…METHODS: We genotyped the IL6R rs2228145 nonsynonymous variant (Asp(358)Ala) and assayed IL6 and sIL6R concentrations in paired samples of plasma and CSF obtained from 120 participants with normal cognition, mild cognitive impairment, or probable AD enrolled in the Wake Forest Alzheimer's Disease Research Center's Clinical Core. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37406
    “…Sensitivity analysis and visualization of MR results were performed by heterogeneity test, pleiotropy test, leave-one-out test, scatter plots, forest plots and funnel plots. RESULTS: The MRE-IVW method in the first step of MR analysis revealed that SLE was causally associated with hypothyroidism (OR = 1.049, 95% CI = 1.020-1.079, P < 0.001), but not causally associated with hyperthyroidism (OR = 1.045, 95% CI = 0.987-1.107, P = 0.130). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37407
    “…Least absolute shrinkage and selection operator regression, recursive feature elimination algorithm, random forest, and minimum-redundancy maximum-relevancy (mRMR) method were used for feature selection. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37408
    “…A total of 15 candidate predictors (older adults’ demographic and clinical factors) that could be commonly and easily collected from clinical practice were used to build 9 independent ML models: Gaussian Naïve Bayesian (GNB), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), support vector machine (SVM), random forest (RF), multilayer perceptron (MLP), extreme gradient boosting (XGBoost), and light gradient boosting machine (Lightgbm), as well as stacking ensemble ML. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37409
  10. 37410
    “…Differentially expressed proteins (DEPs) were used to construct prediction models via five machine learning algorithms: naive Bayes, support vector machine, extreme gradient boosting, random forest, and neural network. The prediction performance of the five models was assessed using the area under the curve (AUC) value, recall (sensitivity), specificity, precision, accuracy, F1 score, and residual distribution. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37411
    “…Then, machine learning algorithms including LASSO regression and random forest were adopted for screening candidate biomarkers and constructing diagnostic nomogram for predicting CKD-related CAVD. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37412
    por Chen, Liang, Hua, Jie, He, Xiaopu
    Publicado 2023
    “…The optimum machine model was then determined by comparing the performance of the eXtreme Gradient Boost (XGB), the random forest model (RF), the general linear model (GLM), and the support vector machine model (SVM). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37413
    “…Results were displayed in forest plots with a random-effects model. Standardized mean difference, standard error (SE) and 95% confidence intervals were calculated for all studies. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37414
  15. 37415
  16. 37416
  17. 37417
  18. 37418
    “…Statistical analysis of data was performed in Revman5.3 software, including drawing forest diagrams, drawing funnel diagrams and so on. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37419
    “…An academic-governmental partnership between Yale University, The Ohio State University, Wake Forest University, the Ohio Department of Health, the Ohio National Guard, and the Columbus Metropolitan Libraries conducted a study of bandit algorithms to maximize the detection of new cases of SARS-CoV-2 in this Ohio city in 2021. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37420
    “…We used LASSO (least absolute shrinkage and selection operator) regression and random forests to fit classification algorithms that incorporated structured EHR data elements, clinical notes, or a combination of structured data and clinical notes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS