Mostrando 37,421 - 37,440 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.60s Limitar resultados
  1. 37421
    “…The results of different ML models, such as support vector machine, K-nearest neighbour, decision tree, random forest, and extreme gradient boosting, were compared. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37422
    “…We trained multiple natural language processing (NLP) predictive models by combining two clinical concept extraction methods and two supervised machine learning (ML) methods: random forest and XGBoost. Using chart review as the reference standard, we compared the model performances with those of the commonly applied International Classification of Diseases (ICD-10-CA) codes, on the metrics of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37423
    “…The survey across all countries employed a cross-sectional study design and collected data on basic sociodemographic characteristics and different health indicators. Forest plot was used to present the overall and country-level prevalence of suboptimal birth spacing. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37424
    “…Identification of differentially expressed genes (DEGs) and key modules via weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, and machine learning algorithms (Random Forest and LASSO regression) were used to identify hub genes for diagnosing AD with MS. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37425
    “…The corresponding results, forest and funnel plots of the psychological consequences of COVID-19 were synthesized. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37426
  7. 37427
  8. 37428
    “…Additional analysis using random forest machine learning showed that rumen fluid microbiota and their metabolites of young goats, such as Prevotellaceae UCG-003, acetate to propionate ratio could be potential microbial markers that can potentially classify high or low ADG goats with an accuracy of prediction of > 81.3%. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37429
    “…Then, least absolute shrinkage and selection operator (LASSO) logistic regression, support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF) algorithms were combined to screen the key potential biomarkers of idiopathic pulmonary fibrosis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37430
    “…A profound reduction of aldosterone levels and normalisation of rhythmicity was seen post adrenalectomy. Applying a Random Forest classifier in a subgroup of 20 PA patients, 82% specificity and 85% sensibility were achieved to discriminate PA from HS. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37431
    “…Six binary classifiers, including K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), and multi-layer perceptron (MLP), were employed to differentiate LPA from sPHEO. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37432
    “…Conversely, spending time in natural environments such as parks or forests, or even viewing nature-themed images in a lab setting, is associated with lower levels of perceived stress and is hypothesized to be a strong stress “buffer,” reducing perceived stress even after leaving the natural setting. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37433
    “…Outcome measures were prevalence of P. aeruginosa and MRSA in the overall clinically defined cohort and among microbiologically confirmed cases and predictors of P. aeruginosa or MRSA isolation, as determined by univariate logistic regression, bootstrapped least absolute shrinkage and selection operator, and random forest analyses. Additionally, we describe the iterative process used and challenges encountered in carrying out the new ATS/IDSA guideline recommendations. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37434
    “…Six approaches—logistic regression, extreme gradient boosting machine, decision tree, random forest, neural network, and gradient boosting machine—were implemented in this study. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37435
    “…Gaussian Naive Bayes had lower performance compared to other classifiers, while KNN achieved high performance using deep features linked with PCA. Random Forest performed well with the combination of deep features and radiomics features, achieving an AUC of 0.94 and balanced accuracy of 0.76. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37436
    “…Using the preselected 46 clinical and laboratory variables, the area under the receiver operating characteristic curve of CatBoost classifier, random forest classifier, and regularized logistic regression classifier models were 0.860 (95% CI 0.852-0.868), 0.855 (95% CI 0.848-0.863), and 0.823 (95% CI 0.813-0.832), respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37437
    “…The other important variables are distance to the nearest water source (0.165), mean minimum temperature (0.130), broadleaf forest area (0.105), amount of precipitation (0.073), surface temperature (0.066), soil bulk density (0.037) and grassland area (0.031). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37438
    “…ML models based on baseline respiratory (oropharynx) microbiota profiles exhibited the ability to predict outcomes (survival and death, Random Forest, AUC = 0.847, Sensitivity = 0.833, Specificity = 0.750) after SARS-CoV-2 infection. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37439
  20. 37440
Herramientas de búsqueda: RSS