Mostrando 37,441 - 37,460 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.42s Limitar resultados
  1. 37441
    “…RESULTS: We obtained the highest area under the curve (0.796) in medical visit prediction with our random forests model and daywise features. Ablating feature categories one at a time showed that the model performance worsened the most when location features were dropped. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37442
    “…No specific instructions were given to the participants regarding phone placement. We used random forest classifiers to develop both personalized and global predictors of sleep state from the phone sensor data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37443
    “…For An. albimanus mosquitoes (from the Pacific coast, Mexican gulf and Lacandon Forest lowlands), these two parameters were higher in specimens infected with P. vivax Vk210/Pvs25-A versus Vk210/Pvs25-B or Vk247/Pvs25-B (P < 0.001). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37444
    “…The relationship between HbA1c and bone biochemical markers was analyzed by multivariate regression, forest plot and fitted curve. RESULTS: Bone formation markers including N-MID osteocalcin and procollagen type 1 amino-terminal pro-peptide (PINP) were decreased in postmenopausal women with T2DM compared to controls (17.42 ± 9.50 vs 23.67 ± 7.58, p < 0.001; 48.47 ± 27.27 vs 65.86 ± 21.06, p < 0.001, respectively), but the bone resorption markers β-crossLaps (β-CTX) was no difference between the two groups (0.57 ± 0.28 vs 0.55 ± 0.21, p = 0.868). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37445
    “…Passive digital phenotypes were processed into 130 features based on circadian rhythms, and a mood prediction algorithm was developed by random forest. RESULTS: The mood state prediction accuracies for the next 3 days in all patients, MDD patients, BD I patients, and BD II patients were 65%, 65%, 64%, and 65% with 0.7, 0.69, 0.67, and 0.67 area under the curve (AUC) values, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37446
  7. 37447
    “…METHODS: Patient-level diagnostic, behavioral, demographic, and past visit history data extracted from structured datasets were merged with outcome variables extracted from unstructured free-text datasets and were used to train random forest decision models that predicted the need of advanced care for depression across (1) the overall patient population and (2) various subsets of patients at higher risk for depression-related adverse events; patients with a past diagnosis of depression; patients with a Charlson comorbidity index of ≥1; patients with a Charlson comorbidity index of ≥2; and all unique patients identified across the 3 above-mentioned high-risk groups. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37448
  9. 37449
    por Gessain, Antoine
    Publicado 2013
    “…In this review, after an introduction on emerging viruses, we will briefly present the results of a large epidemiological study performed in groups of Bantus and Pygmies living in villages and settlements located in the rain forest of the South region of Cameroon. These populations are living nearby the habitats of several monkeys and apes, often naturally infected by different retroviruses including SIV, STLV and simian foamy virus. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37450
    “…Standard error, upper and lower confidence intervals at 95% confidence interval for the risk were obtained using STATA Version 15 which was also used to generate forest plots for pooled analysis. The random or fixed effect model was applied depending on the heterogeneity (I(2)). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37451
    por Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G., Thomas, E. Louise, Koivula, Robert W., Kurbasic, Azra, Mutie, Pascal M., Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y., Giordano, Giuseppe N., Forgie, Ian M., McDonald, Timothy J., Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H., Hansen, Tue H., Heggie, Alison, Hong, Mun-Gwan, Elders, Petra J. M., Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S., Sharma, Sapna, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, ‘t Hart, Leen M., Adamski, Jerzy, Musholt, Petra B., Brage, Soren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, Pedersen, Oluf, Ridderstråle, Martin, Ruetten, Hartmut, Hattersley, Andrew T., Walker, Mark, Beulens, Joline W. J., Mari, Andrea, Schwenk, Jochen M., Gupta, Ramneek, McCarthy, Mark I., Pearson, Ewan R., Bell, Jimmy D., Pavo, Imre, Franks, Paul W.
    Publicado 2020
    “…We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37452
  13. 37453
    “…Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37454
    “…Qualitative variables were summarized with frequencies, whereas quantitative variables with central and variability indicators depending on their parametric distribution. Forest plots were used to describe point estimates and in-between studies variability. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37455
    “…Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37456
  17. 37457
  18. 37458
    “…Data will be analysed using statistical software and presented in evidence tables and in meta-analytic forest plots. DISCUSSION: This protocol is developed to systematically review the literature on the prevalence and severity of anaemia, risk factors and outcomes in pregnant women in South Africa. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37459
    “…The optimized random forest classifier was able to distinguish between low-grade and high-grade fibrosis with excellent cross-validated accuracy in both the first and second analysis (AUC = 0.90, CI = 0.85–0.95 vs. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37460
    “…RESULTS: The areas under the receiver operating characteristic curve (AUROC) of external validation dataset for support vector machine (SVM), random forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB), decision tree, logistic regression (LR), eXtreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774, 0.614, 0.769, 0.742, and 0.757, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS