Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37441por Agarwal, Vibhu, Zhang, Liangliang, Zhu, Josh, Fang, Shiyuan, Cheng, Tim, Hong, Chloe, Shah, Nigam H“…RESULTS: We obtained the highest area under the curve (0.796) in medical visit prediction with our random forests model and daywise features. Ablating feature categories one at a time showed that the model performance worsened the most when location features were dropped. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37442por Saeb, Sohrab, Cybulski, Thaddeus R, Schueller, Stephen M, Kording, Konrad P, Mohr, David C“…No specific instructions were given to the participants regarding phone placement. We used random forest classifiers to develop both personalized and global predictors of sleep state from the phone sensor data. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37443por González-Cerón, Lilia, Rodríguez, Mario H., Nettel-Cruz, José A., Hernández-Ávila, Juan E., Malo-García, Iliana R., Santillán-Valenzuela, Frida, Villarreal-Treviño, Cuauhtémoc“…For An. albimanus mosquitoes (from the Pacific coast, Mexican gulf and Lacandon Forest lowlands), these two parameters were higher in specimens infected with P. vivax Vk210/Pvs25-A versus Vk210/Pvs25-B or Vk247/Pvs25-B (P < 0.001). …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37444por Wang, Lianzi, Li, Tao, Liu, Jiaqing, Wu, Xian, Wang, Huihui, Li, Xuemei, Xu, Enjun, Chen, Qiuli, Yan, Chuan, Li, Huimin, Xu, Yuanhong, Wei, Wei“…The relationship between HbA1c and bone biochemical markers was analyzed by multivariate regression, forest plot and fitted curve. RESULTS: Bone formation markers including N-MID osteocalcin and procollagen type 1 amino-terminal pro-peptide (PINP) were decreased in postmenopausal women with T2DM compared to controls (17.42 ± 9.50 vs 23.67 ± 7.58, p < 0.001; 48.47 ± 27.27 vs 65.86 ± 21.06, p < 0.001, respectively), but the bone resorption markers β-crossLaps (β-CTX) was no difference between the two groups (0.57 ± 0.28 vs 0.55 ± 0.21, p = 0.868). …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37445por Cho, Chul-Hyun, Lee, Taek, Kim, Min-Gwan, In, Hoh Peter, Kim, Leen, Lee, Heon-Jeong“…Passive digital phenotypes were processed into 130 features based on circadian rhythms, and a mood prediction algorithm was developed by random forest. RESULTS: The mood state prediction accuracies for the next 3 days in all patients, MDD patients, BD I patients, and BD II patients were 65%, 65%, 64%, and 65% with 0.7, 0.69, 0.67, and 0.67 area under the curve (AUC) values, respectively. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37446por Fu, Sunyang, Leung, Lester Y, Wang, Yanshan, Raulli, Anne-Olivia, Kallmes, David F, Kinsman, Kristin A, Nelson, Kristoff B, Clark, Michael S, Luetmer, Patrick H, Kingsbury, Paul R, Kent, David M, Liu, Hongfang“…The machine learning models adopted convolutional neural network (CNN), random forest, support vector machine, and logistic regression. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37447por Kasthurirathne, Suranga N, Biondich, Paul G, Grannis, Shaun J, Purkayastha, Saptarshi, Vest, Joshua R, Jones, Josette F“…METHODS: Patient-level diagnostic, behavioral, demographic, and past visit history data extracted from structured datasets were merged with outcome variables extracted from unstructured free-text datasets and were used to train random forest decision models that predicted the need of advanced care for depression across (1) the overall patient population and (2) various subsets of patients at higher risk for depression-related adverse events; patients with a past diagnosis of depression; patients with a Charlson comorbidity index of ≥1; patients with a Charlson comorbidity index of ≥2; and all unique patients identified across the 3 above-mentioned high-risk groups. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37448por Kyaw, Bhone Myint, Tudor Car, Lorainne, van Galen, Louise Sandra, van Agtmael, Michiel A, Costelloe, Céire E, Ajuebor, Onyema, Campbell, James, Car, Josip“…We used random-effect models for the pooled analysis and assessed statistical heterogeneity by visual inspection of a forest plot and calculation of the I(2) statistic. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37449por Gessain, Antoine“…In this review, after an introduction on emerging viruses, we will briefly present the results of a large epidemiological study performed in groups of Bantus and Pygmies living in villages and settlements located in the rain forest of the South region of Cameroon. These populations are living nearby the habitats of several monkeys and apes, often naturally infected by different retroviruses including SIV, STLV and simian foamy virus. …”
Publicado 2013
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37450“…Standard error, upper and lower confidence intervals at 95% confidence interval for the risk were obtained using STATA Version 15 which was also used to generate forest plots for pooled analysis. The random or fixed effect model was applied depending on the heterogeneity (I(2)). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37451por Atabaki-Pasdar, Naeimeh, Ohlsson, Mattias, Viñuela, Ana, Frau, Francesca, Pomares-Millan, Hugo, Haid, Mark, Jones, Angus G., Thomas, E. Louise, Koivula, Robert W., Kurbasic, Azra, Mutie, Pascal M., Fitipaldi, Hugo, Fernandez, Juan, Dawed, Adem Y., Giordano, Giuseppe N., Forgie, Ian M., McDonald, Timothy J., Rutters, Femke, Cederberg, Henna, Chabanova, Elizaveta, Dale, Matilda, Masi, Federico De, Thomas, Cecilia Engel, Allin, Kristine H., Hansen, Tue H., Heggie, Alison, Hong, Mun-Gwan, Elders, Petra J. M., Kennedy, Gwen, Kokkola, Tarja, Pedersen, Helle Krogh, Mahajan, Anubha, McEvoy, Donna, Pattou, Francois, Raverdy, Violeta, Häussler, Ragna S., Sharma, Sapna, Thomsen, Henrik S., Vangipurapu, Jagadish, Vestergaard, Henrik, ‘t Hart, Leen M., Adamski, Jerzy, Musholt, Petra B., Brage, Soren, Brunak, Søren, Dermitzakis, Emmanouil, Frost, Gary, Hansen, Torben, Laakso, Markku, Pedersen, Oluf, Ridderstråle, Martin, Ruetten, Hartmut, Hattersley, Andrew T., Walker, Mark, Beulens, Joline W. J., Mari, Andrea, Schwenk, Jochen M., Gupta, Ramneek, McCarthy, Mark I., Pearson, Ewan R., Bell, Jimmy D., Pavo, Imre, Franks, Paul W.“…We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37452por Weisman, Alanna, Tu, Karen, Young, Jacqueline, Kumar, Matthew, Austin, Peter C, Jaakkimainen, Liisa, Lipscombe, Lorraine, Aronson, Ronnie, Booth, Gillian L“…Algorithms were developed using classification trees, random forests, and rule-based methods, using electronic medical record (EMR) data, administrative data, or both. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37453por Su, Longxiang, Liu, Chun, Li, Dongkai, He, Jie, Zheng, Fanglan, Jiang, Huizhen, Wang, Hao, Gong, Mengchun, Hong, Na, Zhu, Weiguo, Long, Yun“…Candidate machine learning models (random forest, support vector machine, adaptive boosting, extreme gradient boosting, and shallow neural network) were compared in 3 patient groups to evaluate the classification performance for predicting the subtherapeutic, normal therapeutic, and supratherapeutic patient states. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37454por Capobianco, Giampiero, Saderi, Laura, Aliberti, Stefano, Mondoni, Michele, Piana, Andrea, Dessole, Francesco, Dessole, Margherita, Cherchi, Pier Luigi, Dessole, Salvatore, Sotgiu, Giovanni“…Qualitative variables were summarized with frequencies, whereas quantitative variables with central and variability indicators depending on their parametric distribution. Forest plots were used to describe point estimates and in-between studies variability. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37455por Du, Zhenzhen, Yang, Yujie, Zheng, Jing, Li, Qi, Lin, Denan, Li, Ye, Fan, Jianping, Cheng, Wen, Chen, Xie-Hui, Cai, Yunpeng“…Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37456por Jena, Belayneh Hamdela, Biks, Gashaw Andargie, Gelaye, Kassahun Alemu, Gete, Yigzaw Kebede“…R version 3.4.3 software was used for the meta-analysis. A forest plot and I(2) test were done to assess heterogeneity. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37457por Kotepui, Manas, Kotepui, Kwuntida Uthaisar, De Jesus Milanez, Giovanni, Masangkay, Frederick Ramirez“…The estimates of the different proportions in each analysis group that were visually summarized in a forest plot showed the odds ratio (OR) and 95% confidence interval (CI). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37458“…Data will be analysed using statistical software and presented in evidence tables and in meta-analytic forest plots. DISCUSSION: This protocol is developed to systematically review the literature on the prevalence and severity of anaemia, risk factors and outcomes in pregnant women in South Africa. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37459por Budai, Bettina Katalin, Tóth, Ambrus, Borsos, Petra, Frank, Veronica Grace, Shariati, Sonaz, Fejér, Bence, Folhoffer, Anikó, Szalay, Ferenc, Bérczi, Viktor, Kaposi, Pál Novák“…The optimized random forest classifier was able to distinguish between low-grade and high-grade fibrosis with excellent cross-validated accuracy in both the first and second analysis (AUC = 0.90, CI = 0.85–0.95 vs. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37460por Shen, Jiayi, Chen, Jiebin, Zheng, Zequan, Zheng, Jiabin, Liu, Zherui, Song, Jian, Wong, Sum Yi, Wang, Xiaoling, Huang, Mengqi, Fang, Po-Han, Jiang, Bangsheng, Tsang, Winghei, He, Zonglin, Liu, Taoran, Akinwunmi, Babatunde, Wang, Chi Chiu, Zhang, Casper J P, Huang, Jian, Ming, Wai-Kit“…RESULTS: The areas under the receiver operating characteristic curve (AUROC) of external validation dataset for support vector machine (SVM), random forest, AdaBoost, k-nearest neighbors (kNN), naive Bayes (NB), decision tree, logistic regression (LR), eXtreme gradient boosting (XGBoost), and gradient boosting decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774, 0.614, 0.769, 0.742, and 0.757, respectively. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto