Mostrando 37,481 - 37,500 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.30s Limitar resultados
  1. 37481
    “…The user can choose between two potential predictors, a Random Forest (RF) classifier and a Wide and Deep Neural Network (WDNN) to predict phenotypic resistance to 13 and 10 anti-tuberculosis drugs, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37482
  3. 37483
    “…In the wrapper stage, k-nearest neighbors (kNN), Naïve Bayes (NB), and random forest (RF) were evaluated as the wrapping components to further refine the features from the candidate feature set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  4. 37484
    “…The results showed that among the 1000 SNP sites, 995 probes were synthesized, 4 of which could not be typed, while 973 loci were polymorphic. PCA, random forest and ADMIXTURE results showed that the 1 K sika deer SNP chip was able to clearly distinguish sika deer, red deer, and hybrid deer and that this 1 K SNP chip technology may provide technical support for the protection and utilization of pure sika deer species resources. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37485
    “…Multiple machine learning methods, including random forest (RF-method), were used to generate models to predict bDMARD responses, and we compared them with the logistic regression model. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37486
    “…In total, four machine learning algorithms, namely logistic regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for prediction. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37487
    “…The potential pathogenicity of the identified synonymous variant was predicted using the splice site algorithms dbscSNV11_AdaBoost, dbscSNV11_RandomForest, and Human Splicing Finder (HSF). RESULTS: All patients showed severe respiratory distress, which could not be relieved by mechanical ventilation, supplementation of surfactant, or steroid therapy, and died at an early age. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37488
    “…Six machine learning models (i.e., logistic regression, decision tree, random forest, extreme-gradient boosting, support vector machine, and artificial neural network) were tested using a five-fold cross validation on the input data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37489
    “…Logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training set. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37490
    “…We developed a score using seven parameters (echogenicity, SOFA-score, angiopoietin-2, syndecan-1, ICAM-1, lactate and interleukin-6). A Random Forest prediction model boosted its diagnostic characteristics (AUC 0.963, P < 0.001), while a two-parameter decision tree model showed good specifications (AUC 0.865). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37491
  12. 37492
    “…Meta-analysis by pre-existing morbidity type was performed using Stata 17 and the data was presented with a Forest Plot. Random effects models were used to calculate summary estimates if there was substantial clinical or statistical heterogeneity and post mean DCS scores were described in a sensitivity analysis and presented as a line graph, to improve clinical interpretation of results.. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37493
    “…Early ICU transfer patients were younger (P<.001), had higher rates of underlying diseases (eg, cardiovascular, neuropsychological, and congenital anomaly/genetic disorders; P<.001), had abnormal laboratory data, had higher pulse rates (P<.001), had higher breath rates (P<.001), had lower oxygen saturation (P<.001), and had lower peak body temperature (P<.001) at admission than patients without ICU transfer. The random forest (RF) algorithm achieved the best performance (sensitivity 0.94, 95% CI 0.92-0.95; specificity 0.94, 95% CI 0.92-0.95; AUC 0.99, 95% CI 0.98-0.99; and average precision 0.93, 95% CI 0.90-0.96). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37494
    “…To obtain marked antimicrobial and cytotoxic fermentation products of culturable endophytic fungi from mangrove forests, our research evaluated the antimicrobial and cytotoxic activities of crude extracts of endophytic fungi from Rhizophora stylosa and Rhizophora mucronata. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37495
    “…Our analysis uses co-occurrence of amino acids to build the matrices and Random Forests to classify them. We then interpret the classification model using SHAP Values to identify which amino acid co-occurrences increase the likelihood of severe outcomes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37496
  17. 37497
    “…A single accelerometer was affixed to the side panel of an LLIN and participants carried out five LLIN use behaviours: (1) unfurling a net; (2) entering an unfurled net; (3) lying still as if sleeping; (4) exiting from under a net; and, (5) folding up a net. The randomForest package in R, a supervised non-linear classification algorithm, was used to train models on 20-s epochs of tagged accelerometer data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37498
    “…One conventional regression and tree-based model, such as least absolute shrinkage and selection operator (LASSO), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost), was developed. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37499
    “…Associations of the mental health and QoL with socio-demographic, COVID-19 course, and recovery variables were assessed by multi-parameter Random Forest and Poisson modeling. Mental health risk subsets were defined by self-organizing maps (SOMs) and hierarchical clustering algorithms. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37500
    “…We compared 4 machine learning models, namely support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), and deep neural network (DNN), with the area under the curve (AUC) of the receiver operating characteristic curve. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS