Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37481por Gröschel, Matthias I., Owens, Martin, Freschi, Luca, Vargas, Roger, Marin, Maximilian G., Phelan, Jody, Iqbal, Zamin, Dixit, Avika, Farhat, Maha R.“…The user can choose between two potential predictors, a Random Forest (RF) classifier and a Wide and Deep Neural Network (WDNN) to predict phenotypic resistance to 13 and 10 anti-tuberculosis drugs, respectively. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37482por Sazawal, Sunil, Ryckman, Kelli K., Das, Sayan, Khanam, Rasheda, Nisar, Imran, Jasper, Elizabeth, Dutta, Arup, Rahman, Sayedur, Mehmood, Usma, Bedell, Bruce, Deb, Saikat, Chowdhury, Nabidul Haque, Barkat, Amina, Mittal, Harshita, Ahmed, Salahuddin, Khalid, Farah, Raqib, Rubhana, Manu, Alexander, Yoshida, Sachiyo, Ilyas, Muhammad, Nizar, Ambreen, Ali, Said Mohammed, Baqui, Abdullah H., Jehan, Fyezah, Dhingra, Usha, Bahl, Rajiv“…We utilized this opportunity to develop machine learning (ML) algorithms. Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37483por Li, Qiaoqin, Liu, Yongguo, Zhu, Jiajing, Chen, Zhi, Liu, Lang, Yang, Shangming, Zhu, Guanyi, Zhu, Bin, Li, Juan, Jin, Rongjiang, Tao, Jing, Chen, Lidian“…In the wrapper stage, k-nearest neighbors (kNN), Naïve Bayes (NB), and random forest (RF) were evaluated as the wrapping components to further refine the features from the candidate feature set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37484por Fan, Huanhuan, Wang, Tianjiao, Li, Yang, Liu, Huitao, Dong, Yimeng, Zhang, Ranran, Wang, Hongliang, Shang, Liyuan, Xing, Xiumei“…The results showed that among the 1000 SNP sites, 995 probes were synthesized, 4 of which could not be typed, while 973 loci were polymorphic. PCA, random forest and ADMIXTURE results showed that the 1 K sika deer SNP chip was able to clearly distinguish sika deer, red deer, and hybrid deer and that this 1 K SNP chip technology may provide technical support for the protection and utilization of pure sika deer species resources. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37485por Lee, Seulkee, Kang, Seonyoung, Eun, Yeonghee, Won, Hong-Hee, Kim, Hyungjin, Lee, Jaejoon, Koh, Eun-Mi, Cha, Hoon-Suk“…Multiple machine learning methods, including random forest (RF-method), were used to generate models to predict bDMARD responses, and we compared them with the logistic regression model. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37486“…In total, four machine learning algorithms, namely logistic regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for prediction. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37487por Zhang, Weifeng, Liu, Zhiyong, Lin, Yiming, Wang, Ruiquan, Xu, Jinglin, He, Ying, Zhang, Fengfeng, Wu, Lianqiang, Chen, Dongmei“…The potential pathogenicity of the identified synonymous variant was predicted using the splice site algorithms dbscSNV11_AdaBoost, dbscSNV11_RandomForest, and Human Splicing Finder (HSF). RESULTS: All patients showed severe respiratory distress, which could not be relieved by mechanical ventilation, supplementation of surfactant, or steroid therapy, and died at an early age. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37488por Hasan, Md Mahmudul, Young, Gary J., Shi, Jiesheng, Mohite, Prathamesh, Young, Leonard D., Weiner, Scott G., Noor-E-Alam, Md.“…Six machine learning models (i.e., logistic regression, decision tree, random forest, extreme-gradient boosting, support vector machine, and artificial neural network) were tested using a five-fold cross validation on the input data. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37489por Wang, Huan, Wu, Wei, Han, Chunxia, Zheng, Jiaqi, Cai, Xinyu, Chang, Shimin, Shi, Junlong, Xu, Nan, Ai, Zisheng“…Logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training set. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37490por Wollborn, Jakob, Hassenzahl, Lars O., Reker, Daniel, Staehle, Hans Felix, Omlor, Anne Marie, Baar, Wolfgang, Kaufmann, Kai B., Ulbrich, Felix, Wunder, Christian, Utzolino, Stefan, Buerkle, Hartmut, Kalbhenn, Johannes, Heinrich, Sebastian, Goebel, Ulrich“…We developed a score using seven parameters (echogenicity, SOFA-score, angiopoietin-2, syndecan-1, ICAM-1, lactate and interleukin-6). A Random Forest prediction model boosted its diagnostic characteristics (AUC 0.963, P < 0.001), while a two-parameter decision tree model showed good specifications (AUC 0.865). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37491por Wei, Xiaodong, Li, Tiange, Ling, Yunfei, Chai, Zheng, Cao, Zhongze, Chen, Kerun, Qian, Yongjun“…The meta-analysis and forest plots were drawn using Review Manager 5.3. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37492por Whybrow, Rebecca, Webster, Louise M., Seed, Paul T., Sandall, Jane, Chappell, Lucy C.“…Meta-analysis by pre-existing morbidity type was performed using Stata 17 and the data was presented with a Forest Plot. Random effects models were used to calculate summary estimates if there was substantial clinical or statistical heterogeneity and post mean DCS scores were described in a sensitivity analysis and presented as a line graph, to improve clinical interpretation of results.. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37493por Liu, Yun-Chung, Cheng, Hao-Yuan, Chang, Tu-Hsuan, Ho, Te-Wei, Liu, Ting-Chi, Yen, Ting-Yu, Chou, Chia-Ching, Chang, Luan-Yin, Lai, Feipei“…Early ICU transfer patients were younger (P<.001), had higher rates of underlying diseases (eg, cardiovascular, neuropsychological, and congenital anomaly/genetic disorders; P<.001), had abnormal laboratory data, had higher pulse rates (P<.001), had higher breath rates (P<.001), had lower oxygen saturation (P<.001), and had lower peak body temperature (P<.001) at admission than patients without ICU transfer. The random forest (RF) algorithm achieved the best performance (sensitivity 0.94, 95% CI 0.92-0.95; specificity 0.94, 95% CI 0.92-0.95; AUC 0.99, 95% CI 0.98-0.99; and average precision 0.93, 95% CI 0.90-0.96). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37494“…To obtain marked antimicrobial and cytotoxic fermentation products of culturable endophytic fungi from mangrove forests, our research evaluated the antimicrobial and cytotoxic activities of crude extracts of endophytic fungi from Rhizophora stylosa and Rhizophora mucronata. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37495“…Our analysis uses co-occurrence of amino acids to build the matrices and Random Forests to classify them. We then interpret the classification model using SHAP Values to identify which amino acid co-occurrences increase the likelihood of severe outcomes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37496por Wilairatana, Polrat, Masangkay, Frederick Ramirez, Kotepui, Kwuntida Uthaisar, De Jesus Milanez, Giovanni, Kotepui, Manas“…Results from individual studies were represented in forest plots. Heterogeneity among studies was assessed using Cochrane Q and I(2) statistics. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37497por Koudou, Guibehi B., Monroe, April, Irish, Seth R., Humes, Michael, Krezanoski, Joseph D., Koenker, Hannah, Malone, David, Hemingway, Janet, Krezanoski, Paul J.“…A single accelerometer was affixed to the side panel of an LLIN and participants carried out five LLIN use behaviours: (1) unfurling a net; (2) entering an unfurled net; (3) lying still as if sleeping; (4) exiting from under a net; and, (5) folding up a net. The randomForest package in R, a supervised non-linear classification algorithm, was used to train models on 20-s epochs of tagged accelerometer data. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37498por Hu, Ping, Liu, Yangfan, Li, Yuntao, Guo, Geng, Su, Zhongzhou, Gao, Xu, Chen, Junhui, Qi, Yangzhi, Xu, Yang, Yan, Tengfeng, Ye, Liguo, Sun, Qian, Deng, Gang, Zhang, Hongbo, Chen, Qianxue“…One conventional regression and tree-based model, such as least absolute shrinkage and selection operator (LASSO), decision tree (DT), random forest (RF), and eXtreme Gradient Boosting (XGBoost), was developed. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37499por Hüfner, Katharina, Tymoszuk, Piotr, Ausserhofer, Dietmar, Sahanic, Sabina, Pizzini, Alex, Rass, Verena, Galffy, Matyas, Böhm, Anna, Kurz, Katharina, Sonnweber, Thomas, Tancevski, Ivan, Kiechl, Stefan, Huber, Andreas, Plagg, Barbara, Wiedermann, Christian J., Bellmann-Weiler, Rosa, Bachler, Herbert, Weiss, Günter, Piccoliori, Giuliano, Helbok, Raimund, Loeffler-Ragg, Judith, Sperner-Unterweger, Barbara“…Associations of the mental health and QoL with socio-demographic, COVID-19 course, and recovery variables were assessed by multi-parameter Random Forest and Poisson modeling. Mental health risk subsets were defined by self-organizing maps (SOMs) and hierarchical clustering algorithms. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37500por Su, Po-Yuan, Wei, Yi-Chia, Luo, Hao, Liu, Chi-Hung, Huang, Wen-Yi, Chen, Kuan-Fu, Lin, Ching-Po, Wei, Hung-Yu, Lee, Tsong-Hai“…We compared 4 machine learning models, namely support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), and deep neural network (DNN), with the area under the curve (AUC) of the receiver operating characteristic curve. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto