Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37501“…To solve this classification task, we used lasso logistic regression (LLR) and random forest (RF), and compared their performance depending on category selection, sampling methods, and hyper-parameter selection. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37502por Clancy, Heather A., Zhu, Zheng, Gordon, Nancy P., Kipnis, Patricia, Liu, Vincent X., Escobar, Gabriel J.“…None of the patient-reported variables, singly or in combination, improved predictive performance of a model that included acute physiology and longitudinal comorbidity burden (area under the receiver operator characteristic curve was 0.716 for both the EHR model and maximal performance of a random forest model including all predictors). CONCLUSIONS: In this insured population, incorporating patient-reported social factors and measures of cognitive and physical function did not improve performance of an EHR-based model predicting 30-day non-elective rehospitalization or mortality. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37503por Tuominen, Jalmari, Lomio, Francesco, Oksala, Niku, Palomäki, Ari, Peltonen, Jaakko, Huttunen, Heikki, Roine, Antti“…Performance of these approaches was compared against autoregressive integrated moving average (ARIMA), regression with ARIMA errors (ARIMAX) and Random Forest (RF). Mean Absolute Percentage Error (MAPE) was used as the main error metric. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37504por Qin, Yan, Wang, Yanlin, Meng, Fanxing, Feng, Min, Zhao, Xiangcong, Gao, Chong, Luo, Jing“…Univariate analysis, least absolute shrinkage and selection operator (LASSO), random forest (RF), and partial least square (PLS) were performed, and the receiver operating characteristic (ROC) curves were plotted. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37505por Li, Bingxiang, Li, Mingyu, Song, Yu, Lu, Xiaoning, Liu, Dajin, He, Chenglu, Zhang, Ruixian, Wan, Xinrui, Zhang, Renning, Sun, Ming, Kuang, Yi-Qun, Li, Ya“…Three machine learning models (support vector machine [SVM], random forest [RF], and multi-layer perceptron [MLP]) were constructed that used the clinical indicators above as parameters. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37506por Król, Nina, Obiegala, Anna, Imholt, Christian, Arz, Charlotte, Schmidt, Elisabeth, Jeske, Kathrin, Ulrich, Rainer Günter, Rentería‑Solís, Zaida, Jacob, Jens, Pfeffer, Martin“…Prevalence was significantly higher in ticks from grassland (16.8%) compared to forests (11.4%). CONCLUSIONS: The high level of small mammal diversity in this region of Germany seems to be reflected in a wide variety of genospecies and STs of B. burgdorferi. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37507por Zheng, Hang, Liu, Heshu, Li, Huayu, Dou, Weidong, Wang, Jingui, Zhang, Junling, Liu, Tao, Wu, Yingchao, Liu, Yucun, Wang, Xin“…Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), Cox regression and random survival forest analyses, and the most important marker was experimentally verified. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37508“…Collectively, the present study provides novel insights into the structure, evolution, and functions of the jujube BAM gene family, thus laying a foundation for further exploration of ZjBAM functional mechanisms in response to elevated temperature and drought stress, while opening up avenues for the development of economic forests in arid areas. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08630-5.…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37509por Li, Minying, Zhang, Jingjing, Zha, Yawen, Li, Yani, Hu, Bingshuang, Zheng, Siming, Zhou, Jiaxiong“…All variables were included in the least absolute shrinkage and selection operator regression to screen out the potential predictors for xerostomia as well as the Grade 3 xerostomia in locoregionally advanced NPC patients receiving radical radiotherapy. The random forest (RF), a decision tree classifier (DTC), and extreme-gradient boosting (XGB) models were constructed. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37510“…Weighted UniFrac also did not differ by day, and the most influential factor impacting β-diversity was the individual horse (R(2) ≥ 0.24; P = 0.0001). Random forest modeling was unable to accurately predict days within C–W and W–C, but could predict the individual horse based on microbial composition (accuracy: 0.92 ± 0.05). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37511por Xu, Zhenxing, Mao, Chengsheng, Su, Chang, Zhang, Hao, Siempos, Ilias, Torres, Lisa K., Pan, Di, Luo, Yuan, Schenck, Edward J., Wang, Fei“…Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37512por Chen, Si-Ding, You, Jia, Yang, Xiao-Meng, Gu, Hong-Qiu, Huang, Xin-Ying, Liu, Huan, Feng, Jian-Feng, Jiang, Yong, Wang, Yong-jun“…The best performing AUC in the test set was the Catboost model (AUC=0.839), followed by the XGBoost, GBDT, random forest and Adaboost model (AUCs equal to 0.838, 0, 835, 0.832, 0.823, respectively). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37513por Bouzalmate Hajjaj, Amira, Massó Guijarro, Paloma, Khan, Khalid Saeed, Bueno-Cavanillas, Aurora, Cano-Ibáñez, Naomi“…To identify a result that is an outlier, we inspected the forest plot for spread of the point estimates and the confidence intervals. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37514por Tripathi, Anchal Kumar, Pilania, Rakesh Kumar, Bhatt, Girish Chandra, Atlani, Mahendra, Kumar, Amber, Malik, Shikha“…In sensitivity analysis, the summary estimates were assessed by repeating meta-analysis after omitting one study at a time. Forest plots were used for reporting outcomes in each study and with their 95% CI. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37515“…The AS risk model of BC was built by Lasso regression, random forest and multivariate Cox regression. The accuracy of the AS risk model and clinicopathological factors were evaluated by time-dependent receiver operating characteristic (ROC) curves. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37516por Hill, Elaine, Mehta, Hemal, Sharma, Suchetha, Mane, Klint, Xie, Catherine, Cathey, Emily, Loomba, Johanna, Russell, Seth, Spratt, Heidi, DeWitt, Peter E., Ammar, Nariman, Madlock-Brown, Charisse, Brown, Donald, McMurry, Julie A., Chute, Christopher G., Haendel, Melissa A., Moffitt, Richard, Pfaff, Emily R., Bennett, Tellen D.“…Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37517por Torres, Kabir A., Konrade, Elliot, White, Jacob, Tavares Junior, Mauro Costa M., Bunch, Joshua T., Burton, Douglas, Jackson, R. Sean, Birlingmair, Jacob, Carlson, Brandon B.“…A meta-analysis was performed with a forest plot to determine risk estimates’ heterogeneity with I(2) index, Q-statistic, and p value under a random-effects model. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37518por Alfakir, Abdalrahman, Arrowsmith, Colin, Burns, David, Razmjou, Helen, Hardisty, Michael, Whyne, Cari“…RESULTS: In total, 19 healthy adults with no history of LBP each completed at least one full session of exercises and postures. Random forest and XGBoost (extreme gradient boosting) models performed the best out of the initial set of 9 engineered feature models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37519por Tsakanikas, Vassilios, Gatsios, Dimitris, Pardalis, Athanasios, Tsiouris, Kostas M, Georga, Eleni, Bamiou, Doris-Eva, Pavlou, Marousa, Nikitas, Christos, Kikidis, Dimitrios, Walz, Isabelle, Maurer, Christoph, Fotiadis, Dimitrios“…Finally, a wide set of ML algorithms, like random forests and neural networks, were used to identify the most suitable model for each scoring component. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37520por Liao, Lauren D., Ferrara, Assiamira, Greenberg, Mara B., Ngo, Amanda L., Feng, Juanran, Zhang, Zhenhua, Bradshaw, Patrick T., Hubbard, Alan E., Zhu, Yeyi“…We compared transparent and ensemble machine learning prediction methods, including least absolute shrinkage and selection operator (LASSO) regression and super learner, containing classification and regression tree, LASSO regression, random forest, and extreme gradient boosting algorithms, to predict risks for pharmacologic treatment beyond MNT. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto