Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37521por Reel, Parminder S., Reel, Smarti, van Kralingen, Josie C., Langton, Katharina, Lang, Katharina, Erlic, Zoran, Larsen, Casper K., Amar, Laurence, Pamporaki, Christina, Mulatero, Paolo, Blanchard, Anne, Kabat, Marek, Robertson, Stacy, MacKenzie, Scott M., Taylor, Angela E., Peitzsch, Mirko, Ceccato, Filippo, Scaroni, Carla, Reincke, Martin, Kroiss, Matthias, Dennedy, Michael C., Pecori, Alessio, Monticone, Silvia, Deinum, Jaap, Rossi, Gian Paolo, Lenzini, Livia, McClure, John D., Nind, Thomas, Riddell, Alexandra, Stell, Anthony, Cole, Christian, Sudano, Isabella, Prehn, Cornelia, Adamski, Jerzy, Gimenez-Roqueplo, Anne-Paule, Assié, Guillaume, Arlt, Wiebke, Beuschlein, Felix, Eisenhofer, Graeme, Davies, Eleanor, Zennaro, Maria-Christina, Jefferson, Emily“…FINDINGS: Complete clinical and biological datasets were generated from 307 subjects (PA=113, PPGL=88, CS=41 and PHT=112). The random forest classifier provided ∼92% balanced accuracy (∼11% improvement on the best mono-omics classifier), with 96% specificity and 0.95 AUC to distinguish one of the four conditions in multi-class ALL-ALL comparisons (PPGL vs PA vs CS vs PHT) on an unseen test set, using 57 MOmics features. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37522por Cha, Yonghan, Kim, Jung-Taek, Park, Chan-Ho, Kim, Jin-Woo, Lee, Sang Yeob, Yoo, Jun-Il“…The accuracy of fracture classification by AI was 86–98.5 and AUC was 0.873–1.0. The forest plot represented that the mean AI diagnosis accuracy was 0.92, the mean AI diagnosis AUC was 0.969, the mean AI classification accuracy was 0.914, and the mean AI classification AUC was 0.933. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37523por Tan, Li, Liu, Qiong, Chen, Yun, Zhao, Ya-Qiong, Zhao, Jie, Dusenge, Marie Aimee, Feng, Yao, Ye, Qin, Hu, Jing, Ou-Yang, Ze-Yue, Zhou, Ying-Hui, Guo, Yue, Feng, Yun-Zhi“…The results are shown in the forest plots as weighted mean differences (WMDs) with 95% confidence intervals (95% CIs). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37524“…Binomial regression (BR), random forest, and XGBoost MLMs were used for prediction. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37525“…The applied machine learning methods include the Support vector machine (SVM) (n = 5, 31.25%) technique, logistic regression (n = 4, 25%), Random Forests (RF) (n = 4, 25%), Bayesian network (BN) (n = 3, 18.75%), linear regression (LR) (n = 3, 18.75%), Decision Tree (DT) (n = 3, 18.75%), neural networks (n = 3, 18.75%), Markov Model (n = 1, 6.25%), KNN (n = 1, 6.25%), K-means (n = 1, 6.25%), Gradient Boosting trees (XGBoost) (n = 1, 6.25%), and Convolutional Neural Network (CNN) (n = 1, 6.25%). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37526por Moslehi, Samad, Mahjub, Hossein, Farhadian, Maryam, Soltanian, Ali Reza, Mamani, Mojgan“…Firstly, the important features for predicting binary outcome (1: death, 0: recovery) were selected using the Random Forest (RF) method. Also, synthetic minority over-sampling technique (SMOTE) method was used for handling imbalanced data. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37527por Finnegan, Eoin, Davidson, Shaun, Harford, Mirae, Watkinson, Peter, Tarassenko, Lionel, Villarroel, Mauricio“…We trained, tuned, and evaluated linear (ordinary least squares, OLS) and non-linear (random forest, RF) machine learning models to estimate [Formula: see text] BP in a nested leave-one-subject-out cross-validation framework. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37528por Nguyen, Hieu T., Vasconcellos, Henrique D., Keck, Kimberley, Reis, Jared P., Lewis, Cora E., Sidney, Steven, Lloyd-Jones, Donald M., Schreiner, Pamela J., Guallar, Eliseo, Wu, Colin O., Lima, João A.C., Ambale-Venkatesh, Bharath“…We then examined and compared the use of model-specific interpretability methods (Random Survival Forest Variable Importance) and model-agnostic methods (SHapley Additive exPlanation (SHAP) and Temporal Importance Model Explanation (TIME)) in cardiovascular risk prediction using the top-performing models. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37529por Luo, Xiao-Qin, Kang, Yi-Xin, Duan, Shao-Bin, Yan, Ping, Song, Guo-Bao, Zhang, Ning-Ya, Yang, Shi-Kun, Li, Jing-Xin, Zhang, Hui“…Multiple machine learning algorithms were tested, including K-nearest neighbor, naive Bayes, support vector machines, random forest, extreme gradient boosting (XGBoost), and neural networks. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37530“…After extraction and selection of the optimal radiomics features from training cohort, six machine learning (ML) classifiers including naïve Bayes (NB), random forest (RF), logistic regression (LR), linear support vector machine (L.SVM), radial SVM (R.SVM), and an artificial neural network (ANN) were developed to predict successful recanalization with SR treatment and compared. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37531por Muñoz Esquivel, Karla, Gillespie, James, Kelly, Daniel, Condell, Joan, Davies, Richard, McHugh, Catherine, Duffy, William, Nevala, Elina, Alamäki, Antti, Jalovaara, Juha, Tedesco, Salvatore, Barton, John, Timmons, Suzanne, Nordström, Anna“…A computational model providing an early identifier of intention to continue device use was developed using these 2 features. Random forest classifiers were shown to provide the highest predictive performance (80% accuracy). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37532por Yang, Liuyang, Li, Gang, Yang, Jin, Zhang, Ting, Du, Jing, Liu, Tian, Zhang, Xingxing, Han, Xuan, Li, Wei, Ma, Libing, Feng, Luzhao, Yang, Weizhong“…Comparisons with random forest, extreme gradient boosting, LSTM, and gated current unit models showed that the MAL model had the best prediction effect. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37533por Tapak, Leili, Ghasemi, Mohammad Kazem, Afshar, Saeid, Mahjub, Hossein, Soltanian, Alireza, Khotanlou, Hassan“…High-risk and low-risk groups were then identified using a hierarchical clustering technique based on 100 encoded features (the number of units of the encoding layer, i.e., bottleneck of the network) from autoencoder and selected by Cox proportional hazards model and a supervised random forest (RF) classifier was used to identify gene profiles related to subtypes of OC from the original 29,096 probes. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37534por Farina, Benito, Guerra, Ana Delia Ramos, Bermejo-Peláez, David, Miras, Carmelo Palacios, Peral, Andrés Alcazar, Madueño, Guillermo Gallardo, Jaime, Jesús Corral, Vilalta-Lacarra, Anna, Pérez, Jaime Rubio, Muñoz-Barrutia, Arrate, Peces-Barba, German R., Maceiras, Luis Seijo, Gil-Bazo, Ignacio, Gómez, Manuel Dómine, Ledesma-Carbayo, María J.“…Additionally, traditional radiomics and deep-radiomics features were extracted from the primary tumors of the computed tomography (CT) scans before treatment and during patient follow-up. Random Forest was used to implementing baseline and longitudinal models using clinical and radiomics data separately, and then an ensemble model was built integrating both sources of information. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37535por Omranian, Samaneh, Zolnoori, Maryam, Huang, Ming, Campos-Castillo, Celeste, McRoy, Susan“…We then developed six prediction models: logistic regression, Elastic Net, least absolute shrinkage and selection operator, random forest classifier, Ridge classifier, and extreme gradient boosting to predict patients’ satisfaction. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37536“…We further compared the no-show model among people with HIV for HIV care appointments to an alternate random forest model we created using a subset of seven readily accessible features used in the Epic model and four additional features related to HIV clinical care or demographics. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37537“…Risk of bias was assessed using funnel plots and quality was assessed by the Newcastle–Ottawa Scale. Forest plots of HRs and their 95% CIs for outcome indicators were plotted. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37538por Madan, Shivank, Chan, Marvyn Allen G., Saeed, Omar, Hemmige, Vagish, Sims, Daniel B., Forest, Stephen J., Goldstein, Daniel J., Patel, Snehal R., Jorde, Ulrich P.Enlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37539por Porretta, A P, Pavlidou, D, Atallah Gonzalez, M I, Unger, S, Rivolta, C, Monney, P, Pruvot, E, Superti-Furga, A“…For each LP/PV and for VUS we applied the Mutscore algorithm using a random forest approach. The Mutscore, which integrates already existing predictive algorithms to data concerning variant topographic localization, has been already validated. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37540por Ning, Zhi-kun, Tian, Hua-kai, Liu, Jiang, Hu, Ce-gui, Liu, Zi-tao, Li, Hui, Zong, Zhen“…The univariate Cox regression analysis and random forest were used to identify hub gene pairs to construct signature for predicting the prognosis of gastric cancer. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto