Mostrando 37,521 - 37,540 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.51s Limitar resultados
  1. 37521
  2. 37522
    “…The accuracy of fracture classification by AI was 86–98.5 and AUC was 0.873–1.0. The forest plot represented that the mean AI diagnosis accuracy was 0.92, the mean AI diagnosis AUC was 0.969, the mean AI classification accuracy was 0.914, and the mean AI classification AUC was 0.933. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37523
  4. 37524
  5. 37525
    “…The applied machine learning methods include the Support vector machine (SVM) (n = 5, 31.25%) technique, logistic regression (n = 4, 25%), Random Forests (RF) (n = 4, 25%), Bayesian network (BN) (n = 3, 18.75%), linear regression (LR) (n = 3, 18.75%), Decision Tree (DT) (n = 3, 18.75%), neural networks (n = 3, 18.75%), Markov Model (n = 1, 6.25%), KNN (n = 1, 6.25%), K-means (n = 1, 6.25%), Gradient Boosting trees (XGBoost) (n = 1, 6.25%), and Convolutional Neural Network (CNN) (n = 1, 6.25%). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37526
    “…Firstly, the important features for predicting binary outcome (1: death, 0: recovery) were selected using the Random Forest (RF) method. Also, synthetic minority over-sampling technique (SMOTE) method was used for handling imbalanced data. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37527
    “…We trained, tuned, and evaluated linear (ordinary least squares, OLS) and non-linear (random forest, RF) machine learning models to estimate [Formula: see text] BP in a nested leave-one-subject-out cross-validation framework. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  8. 37528
    “…We then examined and compared the use of model-specific interpretability methods (Random Survival Forest Variable Importance) and model-agnostic methods (SHapley Additive exPlanation (SHAP) and Temporal Importance Model Explanation (TIME)) in cardiovascular risk prediction using the top-performing models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37529
    “…Multiple machine learning algorithms were tested, including K-nearest neighbor, naive Bayes, support vector machines, random forest, extreme gradient boosting (XGBoost), and neural networks. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37530
    “…After extraction and selection of the optimal radiomics features from training cohort, six machine learning (ML) classifiers including naïve Bayes (NB), random forest (RF), logistic regression (LR), linear support vector machine (L.SVM), radial SVM (R.SVM), and an artificial neural network (ANN) were developed to predict successful recanalization with SR treatment and compared. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37531
    “…A computational model providing an early identifier of intention to continue device use was developed using these 2 features. Random forest classifiers were shown to provide the highest predictive performance (80% accuracy). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37532
    “…Comparisons with random forest, extreme gradient boosting, LSTM, and gated current unit models showed that the MAL model had the best prediction effect. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37533
    “…High-risk and low-risk groups were then identified using a hierarchical clustering technique based on 100 encoded features (the number of units of the encoding layer, i.e., bottleneck of the network) from autoencoder and selected by Cox proportional hazards model and a supervised random forest (RF) classifier was used to identify gene profiles related to subtypes of OC from the original 29,096 probes. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37534
    “…Additionally, traditional radiomics and deep-radiomics features were extracted from the primary tumors of the computed tomography (CT) scans before treatment and during patient follow-up. Random Forest was used to implementing baseline and longitudinal models using clinical and radiomics data separately, and then an ensemble model was built integrating both sources of information. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37535
    “…We then developed six prediction models: logistic regression, Elastic Net, least absolute shrinkage and selection operator, random forest classifier, Ridge classifier, and extreme gradient boosting to predict patients’ satisfaction. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37536
    “…We further compared the no-show model among people with HIV for HIV care appointments to an alternate random forest model we created using a subset of seven readily accessible features used in the Epic model and four additional features related to HIV clinical care or demographics. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37537
    “…Risk of bias was assessed using funnel plots and quality was assessed by the Newcastle–Ottawa Scale. Forest plots of HRs and their 95% CIs for outcome indicators were plotted. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37538
  19. 37539
    “…For each LP/PV and for VUS we applied the Mutscore algorithm using a random forest approach. The Mutscore, which integrates already existing predictive algorithms to data concerning variant topographic localization, has been already validated. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37540
    “…The univariate Cox regression analysis and random forest were used to identify hub gene pairs to construct signature for predicting the prognosis of gastric cancer. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
Herramientas de búsqueda: RSS