Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37581por Lowres, Nicole, Duckworth, Andrew, Redfern, Julie, Thiagalingam, Aravinda, Chow, Clara K“…Five ML models (Naïve Bayes, OneVsRest, Random Forest Decision Trees, Gradient Boosted Trees, and Multilayer Perceptron) and an ensemble model were tested. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37582por Rankin, Debbie, Black, Michaela, Bond, Raymond, Wallace, Jonathan, Mulvenna, Maurice, Epelde, Gorka“…Real and synthetic data were used (separately) to train five supervised machine learning models: stochastic gradient descent, decision tree, k-nearest neighbors, random forest, and support vector machine. Models were tested only on real data to determine whether a model developed by training on synthetic data can used to accurately classify new, real examples. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37583por Xu, Fangyi, Zhu, Wenchao, Shen, Yao, Wang, Jian, Xu, Rui, Outesh, Chooah, Song, Lijiang, Gan, Yi, Pu, Cailing, Hu, Hongjie“…Radiomic feature extraction was performed using Pyradiomics with semi-automatically segmented tumor regions on CT scans that were contoured with an in-house plugin for 3D-Slicer. Random forest (RF) and support vector machine (SVM) were used for feature selection and predictive model building in the training cohort. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37584“…Several classification methods were applied and compared, including robust versions of logistic regression, and support vector machines, as well as random forests and gradient boosted decision trees. RESULTS: Interpretable methods (logistic regression and support vector machines) perform just as well as more complex models in terms of accuracy and detection rates, with the additional benefit of elucidating variables on which the predictions are based. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37585“…METHODS: The methods in this study comprise (1) collecting and coding of transcripts of older adults’ conversations in German, (2) preprocessing transcripts to generate NLP features (bag-of-words models, part-of-speech tags, pretrained German word embeddings), and (3) training machine learning models to detect reminiscence using random forests, support vector machines, and adaptive and extreme gradient boosting algorithms. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37586“…SIMPLE SUMMARY: As the only predatory group in the family Pentatomidae, Asopinae are a diverse group of specialized soft-bodied insect predators, which have the potential for use in controlling pests of orchards, forests, and field crops. However, the feeding behavior remains poorly known for Asopinae, especially how the mouthpart structures relate to various functions in feeding. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37587por Cohen, Joshua P, Wang, Xingzhi, Wade, Rolin L, Cuervo, Helena Diaz, Dionne, Dionne M“…Persistence with ART by regimen for STR and MTR [Image: see text] Figure 1. Forest Plot of Hazard Ratios for Treatment Discontinuation [Image: see text] CONCLUSION: Among US adult PLWH, STRs were associated with longer persistence on first-line therapy compared to MTRs. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37588por Reetsch, Anika, Schwärzel, Kai, Kapp, Gerald, Dornack, Christina, Masisi, Juma, Alichard, Leinalida, Robert, Harriet, Byamungu, Godson, Rocha, Joana Lapão, Stephene, Shadrack, Frederick, Baijukya, Feger, Karl-Heinz“…Agricultural information includes land size, size of homegarden, crops, livestock and livestock keeping, trees, and access to forest. Gender-specific responsibilities includes producing and exchanging seeds, weed control, terracing, distributing organic material to the fields, care of annual and perennial crops, harvesting of crops, decisions about the harvest and animal products, selling and buying products, working on their own farm and off-farm, cooking, storing food, collecting and caring for drinking water, washing, and toilet cleaning. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37589“…PURPOSE: We quantified the accuracy of applying quantile regression forest (QRF) and linear regression (LR) models to sacral-mounted accelerometer data to predict peak vGRF, vertical impulse, and ground contact time across a range of running speeds. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37590por Campos, Claudia L, Jones, Deanna, Snively, Beverly M, Rocco, Michael, Pedley, Carolyn, Atwater, Sara, Moore, Justin B“…METHODS: We will recruit 24 patients of low socioeconomic status with uncontrolled hypertension (systolic BP>140 mmHg or diastolic BP>90 mmHg) showing low medication adherence and taking at least two antihypertensives, who have presented to two outpatient clinics of Wake Forest Baptist Health (Winston Salem, North Carolina, USA). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37591por Zhou, Xiaoting, Wu, Weicheng, Lin, Ziyu, Zhang, Guiliang, Chen, Renxiang, Song, Yong, Wang, Zhiling, Lang, Tao, Qin, Yaozu, Ou, Penghui, Huangfu, Wenchao, Zhang, Yang, Xie, Lifeng, Huang, Xiaolan, Fu, Xiao, Li, Jie, Jiang, Jingheng, Zhang, Ming, Liu, Yixuan, Peng, Shanling, Shao, Chongjian, Bai, Yonghui, Zhang, Xiaofeng, Liu, Xiangtong, Liu, Wenheng“…Machine learning approaches, e.g., random forests (RFs) and support vector machines (SVMs) were employed and multiple geo-environmental factors such as land cover, NDVI, landform, rainfall, lithology, and proximity to faults, roads, and rivers, etc., were utilized to achieve our purposes. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37592por Bai, Ya-Fei, Wang, Chun-Li, Xu, Ming-Zhi, Pan, Ming-Jiao, Sun, Qing-Yi, Chen, Ru-Man“…RevMan 5.3 software is used for statistical analysis and the forest plot is drawn to show the outcome indicators and funnel plot is drawn to show the publication bias. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37593por Agbede, Taiwo Michael“…The research was carried out for two consecutive growing seasons (2018 and 2019) at Owo in the forest-savanna transition zone of Nigeria on a sandy loam. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37594por Yu, Yunfang, He, Zifan, Ouyang, Jie, Tan, Yujie, Chen, Yongjian, Gu, Yang, Mao, Luhui, Ren, Wei, Wang, Jue, Lin, Lili, Wu, Zhuo, Liu, Jingwen, Ou, Qiyun, Hu, Qiugen, Li, Anlin, Chen, Kai, Li, Chenchen, Lu, Nian, Li, Xiaohong, Su, Fengxi, Liu, Qiang, Xie, Chuanmiao, Yao, Herui“…After applying the machine learning random forest algorithm to select the key preoperative MRI radiomic features, we used ALN and tumor radiomic features to develop the ALN-tumor radiomic signature for ALN status prediction by the support vector machine algorithm in 803 patients with breast cancer from Sun Yat-sen Memorial Hospital and Sun Yat-sen University Cancer Center (training cohort). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37595por Wu, Kuan-Han, Cheng, Fu-Jen, Tai, Hsiang-Ling, Wang, Jui-Cheng, Huang, Yii-Ting, Su, Chih-Min, Chang, Yun-Nan“…An ensemble supervised stacking ML model was developed and compared to sensitive and unsensitive Xgboost, Random Forest, and Adaboost. We conducted a performance test and examine both the area under the receiver operating characteristic (AUROC) and the area under the precision and recall curve (AUPRC) as the comparative measures. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37596por Zhang, Liqiang, Yao, Rui, Gao, Jueni, Tan, Duo, Yang, Xinyi, Wen, Ming, Wang, Jie, Xie, Xiangxian, Liao, Ruikun, Tang, Yao, Chen, Shanxiong, Li, Yongmei“…The effective features of the new projection mapping were then sent to the random forest classifier to predict the results. The performance of differentiating GBM from SBM was compared between the integrated radiomics model and other radiomics models or nonradiomics methods using the area under the receiver operating characteristics curve (AUC). …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37597por Ugwoke, Paulinus O., Bakpo, Francis S., Udanor, Collins N., Okoronkwo, Matthew C.“…With this dataset, mining of the movement trace, Stay Points (hot spots), relationships, and the prediction of the next probable geographical location of a COVID-19 patient was realized by the application of Artificial Intelligence (AI) and Data Mining techniques such as supervised Machine Learning (ML) algorithms (i.e., Multiple Linear Regression (MLR), k-Nearest Neighbor (kNN), Decision Tree Regression (DTR), Random Forest Regression (RFR), Gradient Boosting Regression (GBR), and eXtreme Gradient Boosting regression(XGBR) as well as density-based clustering methods (i.e., DBSCAN) for the computation of Stay Points (hot spots) of COVID-19 patient. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37598por Stecher, Chad, Berardi, Vincent, Fowers, Rylan, Christ, Jaclyn, Chung, Yunro, Huberty, Jennifer“…Receiver operating characteristic curve analysis was used to evaluate the ability of the temporal similarity measure to predict future behavior, and variable importance statistics from random forest models were used to corroborate these findings. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37599por Mugenyi, Albert, Muhanguzi, Dennis, Hendrickx, Guy, Nicolas, Gaëlle, Waiswa, Charles, Torr, Steve, Welburn, Susan Christina, Atkinson, Peter M.“…Tsetse abundance was found to be largest at low elevations, in areas of high vegetative activity, in game parks, forests and shrubs during the dry season. There was very limited responsiveness of selected predictors to tsetse abundance during the wet season, matching the known fact that tsetse disperse most significantly during wet season. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37600“…We evaluated a random forest model as an additional baseline. For each model, we repeated the experiment 10 times, using the official training and testing sets. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto