Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37601“…We build ML and logistic regression models that span different classes of modeling approaches: XGBoost, AdaBoost, Gradient Boosting, and Random Forest. Discrimination and calibration were assessed using area under the receiver operating characteristic curve (AUROC) and Brier score, respectively. …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37602por Aiyer, Amiethab A., Patel, Sumit S., Perez, Jose, Vulcano, Ettore, Kaplan, Jonathan R.“…Random effects meta-analyses were summarized as forest plots of individual study and pooled random effect results. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37603por Chang, Benjamin, Lawson, Shawn, Ruiz, Kathleen, Si, Mei, Bagiella, Emilia, Benn, Emma K T, Gabrilove, Janice Lynn“…Real-world science is embedded into fictionalized lands such as the Labyrinth of Target Identification, the Forest of Small Molecule Discovery, the Tree of Biostatistics, the Mountains of FDA Approval and the Desert of Funding. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37604“…AUCs in leave-one-out cross-validation for a decision tree model, an extreme boosting model, a random forest model, a support-vector machine (SVM) model and a generalised linear regression model (GLM) were 0.83 (95% confidence interval [CI] = 0.72–0.94), 0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1), 0.92 (95% CI = 0.84–1) and 0.84 (95% CI = 0.74–0.94), respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37605por Xiao, Jialong, Mo, Miao, Wang, Zezhou, Zhou, Changming, Shen, Jie, Yuan, Jing, He, Yulian, Zheng, Ying“…These algorithms can use censored data for modeling, such as support vector machines for survival analysis and random survival forest (RSF). However, it is still debated whether traditional (Cox proportional hazard regression) or machine learning-based prognostic models have better predictive performance. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37606por Feng, Zi-Heng, Wang, Lu-Yuan, Yang, Zhe-Qing, Zhang, Yan-Yan, Li, Xiao, Song, Li, He, Li, Duan, Jian-Zhao, Feng, Wei“…Finally, partial least square regression (PLSR), support vector regression (SVR), and random forest regression (RFR) were used to construct an optimal monitoring model for wheat powdery mildew disease index (mean disease index, mDI). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37607por Carella, Emanuele, Orusa, Tommaso, Viani, Annalisa, Meloni, Daniela, Borgogno-Mondino, Enrico, Orusa, Riccardo“…A tentative local model is developed concerning on-the-ground data, helping veterinarians, foresters, and wildlife ecologists enforce management health policies in a One Health perspective. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37608por Ji, Meng, Xie, Wenxiu, Zhao, Mengdan, Qian, Xiaobo, Chow, Chi-Yin, Lam, Kam-Yiu, Yan, Jun, Hao, Tianyong“…Discussion. We used the forest plot of multiple logistic regression to explore the association between written post features in the best-performing RVM model and the binary outcome of medication adherence among online post contributors with psychiatric disorders. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37609“…The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using balanced random forest. The personalization was performed by identifying optimal features for a given patient based on a personalization subset consisting of other patients of similar age. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37610por Dagher, Sami, Sulaiman, Abdulrazzaq, Bayle-Bleuez, Sophie, Tissot, Claire, Grangeon-Vincent, Valérie, Laville, David, Fournel, Pierre, Tiffet, Olivier, Forest, FabienEnlace del recurso
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37611por Petrillo, Antonella, Fusco, Roberta, Di Bernardo, Elio, Petrosino, Teresa, Barretta, Maria Luisa, Porto, Annamaria, Granata, Vincenza, Di Bonito, Maurizio, Fanizzi, Annarita, Massafra, Raffaella, Petruzzellis, Nicole, Arezzo, Francesca, Boldrini, Luca, La Forgia, Daniele“…Combinations of only two features, extracted from both CC and MLO views, always showed test accuracy values greater than or equal to 90.00%, with the only exception being the prediction of the human epidermal growth factor receptor 2, where the best performance (test accuracy of 89.29%) was obtained with the random forest algorithm. Conclusions: The results confirm that the identification of malignant breast lesions and the differentiation of histological outcomes and some molecular subtypes of tumors (mainly positive hormone receptor tumors) can be obtained with satisfactory accuracy through both univariate and multivariate analysis of textural features extracted from Contrast-Enhanced Mammography images.…”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37612por Choudhary, Soumya, Thomas, Nikita, Ellenberger, Janine, Srinivasan, Girish, Cohen, Roy“…We quantified 37 digital behavioral markers from the passive smartphone data set and explored the relationship between the digital behavioral markers and depression using correlation coefficients and random forest models. We leveraged 4 supervised machine learning classification algorithms to predict depression and its severity using PHQ-9 scores as the ground truth. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37613“…We also compared the performance of SVM with Random Forest (RF) classifiers. The obtained results demonstrated the potency of our framework, wherein a combination of the hippocampal subfield, the amygdala volume, and brain networks with multiple measures of rs-fMRI could significantly enhance the accuracy of other approaches in diagnosing AD. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37614“…Both approaches used 4 different machine learning models (fuzzy model, logistic regression, random forest, and gradient boosting trees) and 10 metrics (sensitivity, specificity, accuracy, precision, negative predictive value [NPV], F(1) score, area under the curve [AUC], precision-recall AUC, mean G, and index balanced accuracy) to assess the performance of the approaches. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37615por Mao, Yaqian, Huang, Yanling, Xu, Lizhen, Liang, Jixing, Lin, Wei, Huang, Huibin, Li, Liantao, Wen, Junping, Chen, Gang“…Nine different ML algorithms,including eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Random Forests (RF), Logistic Regression (LR), Adaptive Boosting (AdaBoost), Gaussian Naive Bayes (GaussianNB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP),were used to build prognostic models of FTC.10-fold cross-validation and SHapley Additive exPlanations were used to train and visualize the optimal ML model.The AJCC model was built by multivariate Cox regression and visualized through nomogram. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37616por Hu, Qiyi, Wang, Guojie, Song, Xiaoyi, Wan, Jingjing, Li, Man, Zhang, Fan, Chen, Qingling, Cao, Xiaoling, Li, Shaolin, Wang, Ying“…Methods: A total of 154 patients with untreated NPC confirmed by pathological examination were enrolled, and the pretreatment magnetic resonance image (MRI)—including diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, T2-weighted imaging (T2WI), and contrast-enhanced T1-weighted imaging (CE-T1WI)—was collected. The Random Forest (RF) algorithm selected radiomics features and established the machine-learning models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37617por Ruigrok, Mike, Xue, Bing, Catanach, Andrew, Zhang, Mengjie, Jesson, Linley, Davy, Marcus, Wellenreuther, Maren“…Following this selection process, the subset of variants was used as features to classify fish into small, medium, or large size categories using KNN, naïve Bayes, random forest, and logistic regression. The top-scoring features in each feature selection method were subsequently mapped to annotated genomic regions in the zebrafish genome, and a permutation test was conducted to see if the number of mapped regions was greater than when random sampling was applied. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37618por Sodhi, Alisha, Wadhavkar, Isha, Varadarajan, Kartik, Muratoglu, Orhun, Borjali, Alireza, Tanaka, Miho“…Using these measurements, 3 categories of machine learning methods were performed, including interpretable model-based methods (linear model, decision tree, random forest, and gradient boosted tree), non-interpretable model-based methods (neural network, and support vector machine [SVM]), and instance-based method (k-nearest neighbor [KNN]). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37619por Yan, Zhaobo, MuRong, Zhimiao, Huo, Bixiu, Zhong, Huan, Yi, Chun, Liu, Mailan, Liu, Mi“…Mean differences (MD), relative risk (RR), and 95% confidence intervals (CIs) were calculated. The forest plots were performed using the Review Manager Software (5.3 version). …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37620“…Odds ratios (ORs) were calculated for the AAA-related events.Heterogeneity was quantified using the I(2) statistic. Forest plots were created to show the pooled results of each outcome. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto