Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37641“…Feature selection methods were used to select for subsets of transcripts to be used in the selected classification approaches: support vector machine, logistic regression, decision trees, random forest, and extremely randomized decision trees (extra-trees). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37642por Cen, Honglei, Yu, Longhui, Pu, Yuhai, Li, Jingbin, Liu, Zichen, Cai, Qiang, Liu, Shuangyin, Nie, Jing, Ge, Jianbing, Guo, Jianjun, Yang, Shuo, Zhao, Hangxing, Wang, Kang“…Second, to address the problems of many types of ambient air quality parameters in sheep barns and possible redundancy or overlapping information, we used a random forests algorithm (RF) to screen and rank the features affecting CO(2) mass concentration and selected the top four features (light intensity, air relative humidity, air temperature, and PM2.5 mass concentration) as the input of the model to eliminate redundant information among the variables. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37643por Hollier, John M, Strickland, Tiantá A, Fordis, C Michael, van Tilburg, Miranda AL, Shulman, Robert J, Thompson, Debbe“…Their preferred topics were animals, beaches, swimming, and forests. They also recommended adding soft sounds related to the session topic. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37644por Zeng, Liang, Xu, Hui, Li, Shu-Hua, Xu, Shuo-Yu, Chen, Kai, Qin, Liang-Jun, Miao, Lei, Wang, Fang, Deng, Ling, Wang, Feng-Hua, Li, Le, Fu, Sha, Liu, Na, Wang, Ran, Li, Ying-Qing, Wang, Hai-Yun“…In the discovery set, the ICS was constructed using a random forest algorithm and confirmed in the validation set to predict overall survival (OS) and event-free survival (EFS). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37645por Wiens, Kirsten E, Iyer, Anita S, Bhuiyan, Taufiqur R, Lu, Lenette L, Cizmeci, Deniz, Gorman, Matthew J, Yuan, Dansu, Becker, Rachel L, Ryan, Edward T, Calderwood, Stephen B, LaRocque, Regina C, Chowdhury, Fahima, Khan, Ashraful I, Levine, Myron M, Chen, Wilbur H, Charles, Richelle C, Azman, Andrew S, Qadri, Firdausi, Alter, Galit, Harris, Jason B“…We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37646“…It was also used to conduct machine learning exercises such as random forest and regression to identify the best candidate for immune-related central genes. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37647“…To set up benchmarking ML models to predict LBW, we applied 7 classic ML models (ie, logistic regression, naive Bayes, random forest, extreme gradient boosting, adaptive boosting, multilayer perceptron, and sequential artificial neural network) while using 4 different data rebalancing methods: random undersampling, random oversampling, synthetic minority oversampling technique, and weight rebalancing. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37648por Mao, Jing, Chao, Kang, Jiang, Fu-Lin, Ye, Xiao-Ping, Yang, Ting, Li, Pan, Zhu, Xia, Hu, Pin-Jin, Zhou, Bai-Jun, Huang, Min, Gao, Xiang, Wang, Xue-Ding“…In the training set, gradient boosting decision tree (GBDT), extremely random trees (ET), random forest, logistic regression and extreme gradient boosting (XGBoost) obtained AUROC values > 0.90 and AUPRC > 0.87. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37649“…Data included year of birth, sex, height, weight, motivation to join the program, use statistics (eg, weight entries, entries into the food diary, views of the menu, and program content), program type, and weight loss. Random forest, extreme gradient boosting, and logistic regression with L1 regularization models were developed and validated using a 10-fold cross-validation approach. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37650por De Miguel-Rubio, Amaranta, Alba-Rueda, Alvaro, Millán-Salguero, Elena María, De Miguel-Rubio, M Dolores, Moral-Munoz, Jose A, Lucena-Anton, David“…The results were synthesized through information extraction and presented in tables and forest plots. RESULTS: In total, 5 RCTs were included in this systematic review, with 3 (60%) providing information for the meta-analysis. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37651por So, Yoon Kyoung, Kim, Zero, Cheong, Taek Yoon, Chung, Myung Jin, Baek, Chung-Hwan, Son, Young-Ik, Seok, Jungirl, Jung, Yuh-Seog, Ahn, Myung-Ju, Ahn, Yong Chan, Oh, Dongryul, Cho, Baek Hwan, Chung, Man Ki“…Along with conventional ML models such as logistic regression (LR), random forest (RF), and gradient boosting (GB), the DNN model to discern recurrences was trained using a dataset of 778 consecutive patients with primary head and neck cancers who received CCRT. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37652por Fernandes, Glenn J, Choi, Arthur, Schauer, Jacob Michael, Pfammatter, Angela F, Spring, Bonnie J, Darwiche, Adnan, Alshurafa, Nabil I“…METHODS: We trained an ML model using the random forest (RF) algorithm and data from a 6-month weight loss intervention (N=419). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37653por Deng, Yuhan, Ma, Yuan, Fu, Jingzhu, Wang, Xiaona, Yu, Canqing, Lv, Jun, Man, Sailimai, Wang, Bo, Li, Liming“…METHODS: Our study included 5,420,640 participants with fatty liver from Meinian Health Care Center. We used random forest, elastic net (EN), and extreme gradient boosting ML algorithms to select important features from potential predictors. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37654por Garner, Terence, Clayton, Peter Ellis, Hojby, Michael, Murray, Philip, Stevens, Adam“…Classes were balanced using a synthetic minority oversampling technique and Boruta, a feature selection algorithm, was used to refine gene lists. We performed random forest and calculated “out of box” (OOB) area under the curve (AUC) and OOB error rate (ER), measures of predictive accuracy and robustness, respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37655por Hofman, P., Calabrese, F., Kern, I., Adam, J., Alarcão, A., Alborelli, I., Anton, N.T., Arndt, A., Avdalyan, A., Barberis, M., Bégueret, H., Bisig, B., Blons, H., Boström, P., Brcic, L., Bubanovic, G., Buisson, A., Caliò, A., Cannone, M., Carvalho, L., Caumont, C., Cayre, A., Chalabreysse, L., Chenard, M.P., Conde, E., Copin, M.C., Côté, J.F., D’Haene, N., Dai, H.Y., de Leval, L., Delongova, P., Denčić-Fekete, M., Fabre, A., Ferenc, F., Forest, F., de Fraipont, F., Garcia-Martos, M., Gauchotte, G., Geraghty, R., Guerin, E., Guerrero, D., Hernandez, S., Hurník, P., Jean-Jacques, B., Kashofer, K., Kazdal, D., Lantuejoul, S., Leonce, C., Lupo, A., Malapelle, U., Matej, R., Merlin, J.L., Mertz, K.D., Morel, A., Mutka, A., Normanno, N., Ovidiu, P., Panizo, A., Papotti, M.G., Parobkova, E., Pasello, G., Pauwels, P., Pelosi, G., Penault-Llorca, F., Picot, T., Piton, N., Pittaro, A., Planchard, G., Poté, N., Radonic, T., Rapa, I., Rappa, A., Roma, C., Rot, M., Sabourin, J.C., Salmon, I., Prince, S. Savic, Scarpa, A., Schuuring, E., Serre, I., Siozopoulou, V., Sizaret, D., Smojver-Ježek, S., Solassol, J., Steinestel, K., Stojšić, J., Syrykh, C., Timofeev, S., Troncone, G., Uguen, A., Valmary-Degano, S., Vigier, A., Volante, M., Wahl, S.G.F., Stenzinger, A., Ilié, M.Enlace del recurso
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37656por Stüber, Anna Theresa, Coors, Stefan, Schachtner, Balthasar, Weber, Tobias, Rügamer, David, Bender, Andreas, Mittermeier, Andreas, Öcal, Osman, Seidensticker, Max, Ricke, Jens, Bischl, Bernd, Ingrisch, Michael“…Three ML algorithms—a regression model with elastic net regularization (glmnet), a random survival forest (RSF), and a gradient tree-boosting technique (xgboost)—were evaluated for 5 combinations of clinical data, tumor radiomics, and whole-liver features. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37657por Ananthasubramanian, Seshan, Metri, Rahul, Khetan, Ankur, Gupta, Aman, Handen, Adam, Chandra, Nagasuma, Ganapathiraju, Madhavi“…RESULTS: We developed a random forest classifier over features derived from Gene Ontology annotations and genetic context scores provided by STRING database for predicting Mtb and CD interactions independently. …”
Publicado 2012
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37658por Mota, Rubén E Mújica, Tarricone, Rosanna, Ciani, Oriana, Bridges, John FP, Drummond, Mike“…Reported estimates of effect on the probability of surgery from analyses adjusting for confounders were summarised in narrative form and synthesised in odds ratio (OR) forest plots for individual determinants. RESULTS: The review included 26 quantitative studies−23 on individuals’ decisions or views on having the operation and three about health professionals’ opinions-and 10 qualitative studies. …”
Publicado 2012
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37659por Qin, Jie, Zhang, Yanzhou, Zhou, Xin, Kong, Xiangbo, Wei, Shujun, Ward, Robert D, Zhang, Ai-bing“…BACKGROUND: Pine moths (Lepidoptera; Bombycoidea; Lasiocampidae: Dendrolimus spp.) are among the most serious insect pests of forests, especially in southern China. Although COI barcodes (a standardized portion of the mitochondrial cytochrome c oxidase subunit I gene) can distinguish some members of this genus, the evolutionary relationships of the three morphospecies Dendrolimus punctatus, D. tabulaeformis and D. spectabilis have remained largely unresolved. …”
Publicado 2015
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37660“…Binary classification performance for biweekly PHQ-9 samples (n=143), with a cutoff of PHQ-9≥11, based on Random Forest and Support Vector Machine leave-one-out cross validation resulted in 60.1% and 59.1% accuracy, respectively. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto