Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37661“…METHODS: Twelve populations of A. aurantiaca were sampled in large (4), medium (3), and small (5) forest fragments in the lowland tropical rainforest at Los Tuxtlas region. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37662por Tripura, Rupam, Peto, Thomas J., Veugen, Christianne C., Nguon, Chea, Davoeung, Chan, James, Nicola, Dhorda, Mehul, Maude, Richard J., Duanguppama, Jureeporn, Patumrat, Krittaya, Imwong, Mallika, von Seidlein, Lorenz, Grobusch, Martin P., White, Nicholas J., Dondorp, Arjen M.“…Being male (adjusted OR 2.0; 95% CI 1.2-3.4); being a young adult <30 years (aOR 2.1; 95% CI 1.3–3.4); recent forest travel (aOR 2.8; 95% CI 1.6–4.8); and, a history of malaria (aOR 5.2; 95% CI 2.5–10.7) were independent risk factors for parasitaemia. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37663por Aregawi, Maru, Malm, Keziah L., Wahjib, Mohammed, Kofi, Osae, Allotey, Naa-Korkor, Yaw, Peprah Nana, Abba-Baffoe, Wilmot, Segbaya, Sylvester, Owusu-Antwi, Felicia, Kharchi, Abderahmane T., Williams, Ryan O., Saalfeld, Mark, Workneh, Nibretie, Shargie, Estifanos Biru, Noor, Abdisalan M., Bart-Plange, Constance“…Similar decreases in the main malaria indicators were observed in the three epidemiological strata (coastal, forest, savannah). All-cause admissions increased significantly in patients covered by the National Health Insurance Scheme (NHIS) compared to the non-insured. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37664por Babalola, Michael Oluyemi“…RESULTS: Some of the identified strengths of ebola virus include: Ebola virus is an RNA virus with inherent capability to mutate, reassort and recombine to generate mutant or reassortant virulent strains; Ebola virus has a broad cellular tropism; Natural Reservoir of ebola virus is unconfirmed but fruit bats, arthropods, and plants are hypothesized; Ebola virus primarily targets and selectively destroys the immune system; Ebola viruses possess accessory proteins that inhibits the host’ immune responses; Secreted glycoprotein (sGP), a truncated soluble protein that triggers immune activation and increased vascular permeability is uniquely associated with Ebola virus only; Ability to effectively cross the species barrier and establish productive infection in humans, non human primates, and other mammals; Ebola virus attacks every part of the human body; The Weaknesses include: Ebola virus transmission and persistence is severely limited by its virulence; Ebola virus essentially requires host encoded protein Niemann–Pick C1 (NPC1) for host’s cell’ entry; Ebola virus essentially requires host encoded proteins (TIM-1) for cell’ entry; Relative abundance of Ebolavirus Nucleoprotein than the other virion components; The Opportunities harnessed by ebola virus include: Lack of infection control practices in African health-care facilities and paucity of health infrastructures, especially in the endemic zones; Permissiveness of circulating Monocytes, Macrophages and dendritic cells in virus mobilization and dissemination; Collection, consumption and trade of wild games (bushmeats); Pertubation and drastic changes in forest ecosystems present opportunities for Ebola virus; Use of dogs in hunting predisposes man and animals to inter-species contact; Poverty, malnutrition, crowding, social disorder, mobility and political instability; Ease of travel and aviation as potentials for global spread; Possible mechanical transmission by arthropod vectors; No vaccines or therapeutics are yet approved for human treatment; The Threats to ebola virus include: Avoidance of direct contact with infected blood and other bodily fluids of infected patient; Appropriate and correct burial practices; Adoption of barrier Nursing; Improved surveillance to prevent potential spread of epidemic; Making Available Rapid laboratory equipment and procedures for prompt detection (ELISA, Western Blot, PCR); Sterilization or disinfection of equipment and safe disposal of instrument; Prompt hospitalization, isolation and quarantine of infected individual; Active contact tracing and monitoring, among others. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37665Publicado 2017“…METHODS: Beginning in 2001, a total of 5145 overweight or obese people with type 2 diabetes, aged 45–76 years, participating in the multicentre Look AHEAD (Action for Health in Diabetes) study were randomised to ILI (n = 2570) or to a diabetes support and education (DSE) control group (n = 2575) using a web-based management system at the study coordinating centre at Wake Forest School of Medicine (Winston-Salem, NC, USA). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37666por Sethi, Naqash J., Feinberg, Joshua, Nielsen, Emil E., Safi, Sanam, Gluud, Christian, Jakobsen, Janus C.“…Statistical heterogeneity was assessed by visual inspection of forest plots and by calculating inconsistency (I(2)) for traditional meta-analyses and diversity (D(2)) for TSA. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37667por Du, Jingcheng, Tang, Lu, Xiang, Yang, Zhi, Degui, Xu, Jun, Song, Hsing-Yi, Tao, Cui“…The CNN models performed better on all classification tasks than k-nearest neighbors, naïve Bayes, support vector machines, or random forest. Detailed comparison between support vector machines and the CNN models showed that the major contributor to the overall superiority of the CNN models is the improvement on recall, especially for classes with low occurrence. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37668por Wallert, John, Gustafson, Emelie, Held, Claes, Madison, Guy, Norlund, Fredrika, von Essen, Louise, Olsson, Erik Martin Gustaf“…The internal binary classifier was a random forest model within a 3×10–fold cross-validated recursive feature elimination (RFE) resampling which selected the final predictor subset that best differentiated adherers versus nonadherers. …”
Publicado 2018
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37669por Naik, Girish S., Waikar, Sushrut S., Johnson, Alistair E. W., Buchbinder, Elizabeth I., Haq, Rizwan, Hodi, F. Stephen, Schoenfeld, Jonathan D., Ott, Patrick A.“…Analysis was performed using Random Survival Forests (RSF)/ multivariable Cox Proportional-Hazards models. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37670por Lo-Ciganic, Wei-Hsuan, Huang, James L., Zhang, Hao H., Weiss, Jeremy C., Wu, Yonghui, Kwoh, C. Kent, Donohue, Julie M., Cochran, Gerald, Gordon, Adam J., Malone, Daniel C., Kuza, Courtney C., Gellad, Walid F.“…Multivariate logistic regression (MLR), least absolute shrinkage and selection operator–type regression (LASSO), random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN) were applied to predict overdose risk in the subsequent 3 months after initiation of treatment with prescription opioids. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37671por Guthrie, Nicole L, Berman, Mark A, Edwards, Katherine L, Appelbaum, Kevin J, Dey, Sourav, Carpenter, Jason, Eisenberg, David M, Katz, David L“…Machine learning was used to generate a model of participants who would complete the intervention. Random forest models were trained at days 1, 3, and 7 of the intervention, and the generalizability of the models was assessed using leave-one-out cross-validation. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37672“…Conventional classification based on binary logistic regression was built and compared with 4 machine learning models (the logit, decision tree, boosted trees, and random forest models). RESULTS: On the basis of the SGDS-K and K-HDRS, 38% (18/47) of the participants were classified into the probable depression group. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37673por Dunlop, Boadie W., Parikh, Sagar V., Rothschild, Anthony J., Thase, Michael E., DeBattista, Charles, Conway, Charles R., Forester, Brent P., Mondimore, Francis M., Shelton, Richard C., Macaluso, Matthew, Logan, Jennifer, Traxler, Paul, Li, James, Johnson, Holly, Greden, John F.Enlace del recurso
Publicado 2019
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37674por Ioannidis, Konstantinos, Hook, Roxanne, Goudriaan, Anna E., Vlies, Simon, Fineberg, Naomi A., Grant, Jon E., Chamberlain, Samuel R.“…J.E.G. reports grants from the National Center for Responsible Gaming, Forest Pharmaceuticals, Takeda, Brainsway, and Roche and others from Oxford Press, Norton, McGraw-Hill and American Psychiatric Publishing outside of the submitted work.…”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37675por Zuluaga, Mónica Yorlady Alzate, Lima Milani, Karina Maria, Azeredo Gonçalves, Leandro Simões, Martinez de Oliveira, André Luiz“…Strains isolated from conventional horticulture (CH) soil composed three bacterial genera, suggesting a lower diversity for the diazotrophs/N scavenger bacterial community than that observed for soils under organic management (ORG) or secondary forest coverture (SF). Conversely, diazotrophs/N scavenger strains from tomato plants grown in CH soil comprised a higher number of bacterial genera than did strains isolated from tomato plants grown in ORG or SF soils. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37676por Desai, Rishi J., Wang, Shirley V., Vaduganathan, Muthiah, Evers, Thomas, Schneeweiss, Sebastian“…MAIN OUTCOMES AND MEASURES: All-cause mortality, HF hospitalization, top cost decile, and home days loss greater than 25% were modeled using logistic regression, least absolute shrinkage and selection operation regression, classification and regression trees, random forests, and gradient-boosted modeling (GBM). All models were trained using data from network 1 and tested in network 2. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37677por Man, Wing Ho, van Houten, Marlies A, Mérelle, Marieke E, Vlieger, Arine M, Chu, Mei Ling J N, Jansen, Nicolaas J G, Sanders, Elisabeth A M, Bogaert, Debby“…We did sparse random forest classifier analyses on the bacterial data, viral data, metadata, and the combination of all three datasets to distinguish cases from controls. …”
Publicado 2019
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37678“…Statistical analysis was based on a random effects model from which forest plots were generated. Effect sizes were reported as the standardized mean difference (SMD) with 95% confidence intervals (CI). …”
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37679por Haining, Kate, Brunner, Gina, Gajwani, Ruchika, Gross, Joachim, Gumley, Andrew, Lawrie, Stephen, Schwannauer, Matthias, Schultze-Lutter, Frauke, Uhlhaas, Peter“…In the next step, Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Gaussian Naïve Bayes (GNB), and Random Forest (RF) classifiers with 10-fold cross validation were then trained on those features with GAF category at follow-up used as the binary label column. …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37680“…Compared to the conventional mFI, in which the selection of diseases/deficits is based on expert opinion, we adopted the random forest method to select the most influential diseases/deficits that predict adverse outcomes for older people. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto