Materias dentro de su búsqueda.
Materias dentro de su búsqueda.
Bosques
123
Ecología forestal
87
Administración forestal
72
Política forestal
38
Arboles
35
Agricultura
29
Investigaciones
29
Conservación de bosques
27
Ecología de selva lluviosa
25
Selva lluviosa
23
Historia
21
Aspectos ambientales
19
Aspectos económicos
19
Ecología
19
Productos forestales
16
Reforestación
16
Árboles
15
Enfermedades y plagas
14
Pinos
14
Administración
12
Aspectos sociales
12
Conservación de la biodiversidad
12
Leyes y legislación
12
Modelos matemáticos
12
Silvicultura
12
Acuicultura
11
Ecología humana
11
Botánica
10
Desarrollo sostenible
10
Economía forestal
10
-
37741por Shiri, Isaac, Mostafaei, Shayan, Haddadi Avval, Atlas, Salimi, Yazdan, Sanaat, Amirhossein, Akhavanallaf, Azadeh, Arabi, Hossein, Rahmim, Arman, Zaidi, Habib“…We utilized two feature selection algorithms, namely bagging random forest (BRF) and multivariate adaptive regression splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass classification models. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37742“…Models based on extreme gradient boosting (XGB), gradient boosting machine, random forest, support vector machine, and Elastic Net logistic regression were trained. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37743por Reyes, Luis Felipe, Murthy, Srinivas, Garcia-Gallo, Esteban, Merson, Laura, Ibáñez-Prada, Elsa D., Rello, Jordi, Fuentes, Yuli V., Martin-Loeches, Ignacio, Bozza, Fernando, Duque, Sara, Taccone, Fabio S., Fowler, Robert A., Kartsonaki, Christiana, Gonçalves, Bronner P., Citarella, Barbara Wanjiru, Aryal, Diptesh, Burhan, Erlina, Cummings, Matthew J., Delmas, Christelle, Diaz, Rodrigo, Figueiredo-Mello, Claudia, Hashmi, Madiha, Panda, Prasan Kumar, Jiménez, Miguel Pedrera, Rincon, Diego Fernando Bautista, Thomson, David, Nichol, Alistair, Marshall, John C., Olliaro, Piero L.“…Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37744“…Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were applied to train and validate these features to predict osteoporosis. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37745por Angelaki, E, Marketou, M, Barmparis, G, Maragkoudakis, S, Peponaki, E, Kalomoirakis, P, Zervakis, S, Fragkiadakis, K, Plevritaki, A, Pateromichelakis, T, Vardas, P, Kochiadakis, G, Tsironis, G“…We then trained a Random Forest machine learning model to classify subjects with abnormal LVG and calculated SHAP values to perform feature importance and interaction. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37746por Ciaramella, Angelo, Di Nardo, Emanuel, Terracciano, Daniela, Conte, Lia, Febbraio, Ferdinando, Cimmino, Amelia“…After the selection of preferentially expressed and statistically significant T-UCRs, we adopted an ensemble of statistical and machine learning based approaches (i.e., logistic regression, Random Forest, XGBoost and LASSO) for ranking the most important diagnostic molecules. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37747por Schobesberger, S, Franchin, A, Bianchi, F, Rondo, L, Duplissy, J, Kürten, A, Ortega, I K, Metzger, A, Schnitzhofer, R, Almeida, J, Amorim, A, Dommen, J, Dunne, E M, Ehn, M, Gagné, S, Ickes, L, Junninen, H, Hansel, A, Kerminen, V -M, Kirkby, J, Kupc, A, Laaksonen, A, Lehtipalo, K, Mathot, S, Onnela, A, Petäjä, T, Riccobono, F, Santos, F D, Sipilä, M, Tomé, A, Tsagkogeorgas, G, Viisanen, Y, Wagner, P E, Wimmer, D, Curtius, J, Donahue, N M, Baltensperger, U, Kulmala, M, Worsnop, D R“…We compared our results from CLOUD with APi-TOF measurements of $NH_3–H_2SO_4$ anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of $NH_3–H_2SO_4$ clusters in boundary layer particle formation remains to be resolved.…”
Publicado 2015
Enlace del recurso
Enlace del recurso
-
37748por Wang, Di, Pan, Bing, Huang, Jin-Can, Chen, Qing, Cui, Song-Ping, Lang, Ren, Lyu, Shao-Cheng“…Variables identified as independently associated with the primary outcome by least absolute shrinkage and selection operator (LASSO) regression, the random survival forest (RSF) algorithm, and univariate and multivariate Cox regression analyses were introduced to establish the following different machine learning models and canonical regression model: support vector machine (SVM), SurvivalTree, Coxboost, RSF, DeepSurv, and Cox proportional hazards (CoxPH). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37749“…Beyond the discussion from the forest plot, when looking at the single study addressing the relationship between being left-behind and having suicide attempts (note: LBC—OR is 1.22; 95 percent CI is 1.22 –and NLBC—OR is 1.42; 95 percent CI is 1.09–1.86 –at the p-value of 0.34), the findings demonstrate that such a relationship per se is not gendered at the 0.05 statistical significance level. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37750“…Thirdly, SOM prediction models were established based on random forest (RF), support vector regression (SVR), deep neural networks (DNN) and partial least squares regression (PLSR) methods using optimal spectral indexes, denoted here as SI-based models. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37751“…Support vector machine (n=5), k-nearest neighbors (n=3), and random forest (n=2) were the most popular ML approaches. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37752por Enos, Jake, Henkelman, Erik, Mar, Damon, Vopat, Bryan, Tarakemeh, Armin, Dombrowski, Nicholas“…Primary treatment outcomes having data from three or more studies available were summarized in forest plots using RevMan 5.4.1 software (The Cochrane Collaboration, Copenhagen, Denmark). …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37753por Zhu, Hui-Hui, Huang, Ji-Lei, Zhou, Chang-Hai, Zhu, Ting-Jun, Zheng, Jin-Xin, Zhang, Mi-Zhen, Qian, Men-Bao, Chen, Ying-Dan, Li, Shi-Zhu“…Subsequently, machine learning methods, including a Linear Regression (LR), a Random Forest (RF), a Gradient Boosted Machine (GBM), and an Extreme gradient boosting (XGBOOST) model was applied to construct a model to analyze the main influencing factors of soil-transmitted helminthiasis. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37754por Edgcomb, Juliet Beni, Tseng, Chi-hong, Pan, Mengtong, Klomhaus, Alexandra, Zima, Bonnie T“…Machine learning classifiers (least absolute shrinkage and selection operator–penalized logistic regression and random forest) were then trained and tested using codified health record data (eg, child sociodemographics, medications, disposition, and laboratory testing) and the gold standard classification. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37755por Xu, Jiahong, Shi, Yan, Chen, Gongbo, Guo, Yanfei, Tang, Weiling, Wu, Cuiling, Liang, Shuru, Huang, Zhongguo, He, Guanhao, Dong, Xiaomei, Cao, Ganxiang, Yang, Pan, Lin, Ziqiang, Zhu, Sui, Wu, Fan, Liu, Tao, Ma, Wenjun“…Annual average MDA8 O(3) and PM(2.5) at individual residential addresses were estimated by an iterative random forest model and a satellite-based spatiotemporal model, respectively. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37756por Byambadorj, Ser-Oddamba, Hernandez, Jonathan Ogayon, Lkhagvasuren, Sarangua, Erma, Ge, Sharavdorj, Khulan, Park, Byung Bae, Nyam-Osor, Batkhuu“…BACKGROUND: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37757por Zhao, Xiaoxuan, Jiang, Yuepeng, Ma, Xiao, Yang, Qujia, Ding, Xinyi, Wang, Hanzhi, Yao, Xintong, Jin, Linxi, Zhang, Qin“…Employing a variety of machine learning techniques, including one‐way logistic regression, LASSO regression, random forest and artificial neural networks, we screened 11 signature genes from the intersection of immune‐associated DEGs and secretory protein‐encoding genes derived from the Human Protein Atlas. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37758“…To identify the key genes in the unfolded protein response, we constructed diagnostic models using both random forest and support vector machine-recursive feature elimination methods. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37759por Khalilvandi-Behroozyar, H., Mohtashami, B., Dehghan-Banadaky, M., Kazemi-Bonchenari, M., Ghaffari, M. H.“…Of all treatment groups, calves fed Ca–FO achieved the highest final body weight and showed the greatest feed efficiency. Random forest analysis revealed that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid were the serum levels of FA most affected by the diets. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
37760por Nguyen, Kim-Anh-Nhi, Tandon, Pranai, Ghanavati, Sahar, Cheetirala, Satya Narayana, Timsina, Prem, Freeman, Robert, Reich, David, Levin, Matthew A, Mazumdar, Madhu, Fayad, Zahi A, Kia, Arash“…Then, in the final fusion model, we trained a random forest algorithm via 10-fold cross-validation by combining the probability score from the image classifier with 41 longitudinal variables in the EMR. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto