Mostrando 37,741 - 37,760 Resultados de 37,890 Para Buscar '"forestal"', tiempo de consulta: 0.35s Limitar resultados
  1. 37741
    “…We utilized two feature selection algorithms, namely bagging random forest (BRF) and multivariate adaptive regression splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass classification models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  2. 37742
    “…Models based on extreme gradient boosting (XGB), gradient boosting machine, random forest, support vector machine, and Elastic Net logistic regression were trained. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  3. 37743
  4. 37744
    “…Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were applied to train and validate these features to predict osteoporosis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  5. 37745
    “…We then trained a Random Forest machine learning model to classify subjects with abnormal LVG and calculated SHAP values to perform feature importance and interaction. …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  6. 37746
    “…After the selection of preferentially expressed and statistically significant T-UCRs, we adopted an ensemble of statistical and machine learning based approaches (i.e., logistic regression, Random Forest, XGBoost and LASSO) for ranking the most important diagnostic molecules. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  7. 37747
    “…We compared our results from CLOUD with APi-TOF measurements of $NH_3–H_2SO_4$ anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of $NH_3–H_2SO_4$ clusters in boundary layer particle formation remains to be resolved.…”
    Enlace del recurso
    Enlace del recurso
  8. 37748
    “…Variables identified as independently associated with the primary outcome by least absolute shrinkage and selection operator (LASSO) regression, the random survival forest (RSF) algorithm, and univariate and multivariate Cox regression analyses were introduced to establish the following different machine learning models and canonical regression model: support vector machine (SVM), SurvivalTree, Coxboost, RSF, DeepSurv, and Cox proportional hazards (CoxPH). …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  9. 37749
    por Hung, Jason, Chen, Jackson, Chen, Olivia
    Publicado 2023
    “…Beyond the discussion from the forest plot, when looking at the single study addressing the relationship between being left-behind and having suicide attempts (note: LBC—OR is 1.22; 95 percent CI is 1.22 –and NLBC—OR is 1.42; 95 percent CI is 1.09–1.86 –at the p-value of 0.34), the findings demonstrate that such a relationship per se is not gendered at the 0.05 statistical significance level. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  10. 37750
    “…Thirdly, SOM prediction models were established based on random forest (RF), support vector regression (SVR), deep neural networks (DNN) and partial least squares regression (PLSR) methods using optimal spectral indexes, denoted here as SI-based models. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  11. 37751
    “…Support vector machine (n=5), k-nearest neighbors (n=3), and random forest (n=2) were the most popular ML approaches. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  12. 37752
    “…Primary treatment outcomes having data from three or more studies available were summarized in forest plots using RevMan 5.4.1 software (The Cochrane Collaboration, Copenhagen, Denmark). …”
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  13. 37753
    “…Subsequently, machine learning methods, including a Linear Regression (LR), a Random Forest (RF), a Gradient Boosted Machine (GBM), and an Extreme gradient boosting (XGBOOST) model was applied to construct a model to analyze the main influencing factors of soil-transmitted helminthiasis. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  14. 37754
    “…Machine learning classifiers (least absolute shrinkage and selection operator–penalized logistic regression and random forest) were then trained and tested using codified health record data (eg, child sociodemographics, medications, disposition, and laboratory testing) and the gold standard classification. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  15. 37755
    “…Annual average MDA8 O(3) and PM(2.5) at individual residential addresses were estimated by an iterative random forest model and a satellite-based spatiotemporal model, respectively. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  16. 37756
    “…BACKGROUND: The impacts of climate change, such as increased soil dryness and nutrient deficiency, highlight the need for environmentally sustainable restoration of forests and groundwater resources. However, it is important to consider that extensive afforestation efforts may lead to a depletion of groundwater supply due to higher evapotranspiration rates, exacerbating water scarcity issues. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  17. 37757
    “…Employing a variety of machine learning techniques, including one‐way logistic regression, LASSO regression, random forest and artificial neural networks, we screened 11 signature genes from the intersection of immune‐associated DEGs and secretory protein‐encoding genes derived from the Human Protein Atlas. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  18. 37758
    por Yu, Haiyang, Ji, Xiaoyu, Ouyang, Yang
    Publicado 2023
    “…To identify the key genes in the unfolded protein response, we constructed diagnostic models using both random forest and support vector machine-recursive feature elimination methods. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  19. 37759
    “…Of all treatment groups, calves fed Ca–FO achieved the highest final body weight and showed the greatest feed efficiency. Random forest analysis revealed that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid were the serum levels of FA most affected by the diets. …”
    Enlace del recurso
    Enlace del recurso
    Enlace del recurso
    Online Artículo Texto
  20. 37760
Herramientas de búsqueda: RSS