-
261“…Two differential equations, describing a 2-compartmental model, were solved by numerical integration and using Levenberg-Marquardt's method for fitting data. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
262“…Model differential equations programmed in C are solved using a 5(th)-order Runge-Kutta numerical integration scheme. MATLAB is employed for waveform analysis. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
263“…A 5(th)-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
264por Tangherloni, Andrea, Nobile, Marco S., Besozzi, Daniela, Mauri, Giancarlo, Cazzaniga, Paolo“…The computational performance of LASSIE are assessed using a set of randomly generated synthetic reaction-based models of increasing size, ranging from 64 to 8192 reactions and species, and compared to a CPU-implementation of the LSODA numerical integration algorithm. CONCLUSIONS: LASSIE adopts a novel fine-grained parallelization strategy to distribute on the GPU cores all the calculations required to solve the system of ODEs. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
265“…The final positive results were mathematically verified using a computerized system for numerical integration with the rectangle method. Results: Defect areas of the skull CAD models ranged from 55.7–168.8 cm(2), with a mean of 132.3 ± 29.7 cm(2). …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
266por Masi, Alessandro“…A new integrator based on ADC conversion and numerical integration is proposed. The experimental concept validation by emulating the proposed approach on a PXI platform is detailed along with the improvements with respect to the old integrators. …”
Publicado 2011
Enlace del recurso
-
267por Pyle, Ryan, Jovanovic, Nikola, Subramanian, Devika, Palem, Krishna V., Patel, Ankit B.“…The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. …”
Publicado 2021
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
268
-
269por Abreu, P, Adam, W, Adye, T, Ajinenko, I, Alekseev, G D, Alemany, R, Allport, P P, Almehed, S, Amaldi, Ugo, Amato, S, Andreazza, A, Andrieux, M L, Antilogus, P, Apel, W D, Åsman, B, Augustin, J E, Augustinus, A, Baillon, Paul, Bambade, P, Barão, F, Barbi, M S, Barbiellini, Guido, Bardin, Dimitri Yuri, Barker, G, Baroncelli, A, Bärring, O, Barrio, J A, Bartl, Walter, Bates, M J, Battaglia, Marco, Baubillier, M, Baudot, J, Becks, K H, Begalli, M, Beillière, P, Belokopytov, Yu A, Benvenuti, Alberto C, Berggren, M, Bertini, D, Bertrand, D, Besançon, M, Bianchi, F, Bigi, M, Bilenky, S M, Billoir, P, Bizouard, M A, Bloch, D, Blume, M, Bolognese, T, Bonesini, M, Bonivento, W, Booth, P S L, Bosio, C, Botner, O, Boudinov, E, Bouquet, B, Bourdarios, C, Bowcock, T J V, Bozzo, M, Branchini, P, Brand, K D, Brenke, T, Brenner, R A, Bricman, C, Brown, R C A, Brückman, P, Brunet, J M, Bugge, L, Buran, T, Burgsmüller, T, Buschmann, P, Cabrera, S, Caccia, M, Calvi, M, Camacho-Rozas, A J, Camporesi, T, Canale, V, Canepa, M, Cankocak, K, Cao, F, Carena, F, Carroll, L, Caso, Carlo, Castillo-Gimenez, M V, Cattai, A, Cavallo, F R, Chabaud, V, Charpentier, P, Chaussard, L, Checchia, P, Chelkov, G A, Chen, M, Chierici, R, Chliapnikov, P V, Chochula, P, Chorowicz, V, Chudoba, J, Cindro, V, Collins, P, Contri, R, Cortina, E, Cosme, G, Cossutti, F, Cowell, J H, Crawley, H B, Crennell, D J, Crosetti, G, Cuevas-Maestro, J, Czellar, S, Dahl-Jensen, Erik, Dahm, J, D'Almagne, B, Dam, M, Damgaard, G, Dauncey, P D, Davenport, Martyn, Da Silva, W, Defoix, C, Deghorain, A, Della Ricca, G, Delpierre, P A, Demaria, N, De Angelis, A, de Boer, Wim, De Brabandere, S, De Clercq, C, La Vaissière, C de, De Lotto, B, De Min, A, De Paula, L S, De Saint-Jean, C, Dijkstra, H, Di Ciaccio, Lucia, Di Diodato, A, Djama, F, Djannati, A, Dolbeau, J, Doroba, K, Dracos, M, Drees, J, Drees, K A, Dris, M, Durand, J D, Edsall, D M, Ehret, R, Eigen, G, Ekelöf, T J C, Ekspong, Gösta, Elsing, M, Engel, J P, Erzen, B, Espirito-Santo, M C, Falk, E, Fassouliotis, D, Feindt, Michael, Fenyuk, A, Ferrer, A, Fichet, S, Filippas-Tassos, A, Firestone, A, Fischer, P A, Föth, H, Fokitis, E, Fontanelli, F, Formenti, F, Franek, B J, Frenkiel, P, Fries, D E C, Frodesen, A G, Frühwirth, R, Fulda-Quenzer, F, Fuster, J A, Galloni, A, Gamba, D, Gandelman, M, García, C, García, J, Gaspar, C, Gasparini, U, Gavillet, P, Gazis, E N, Gelé, D, Gerber, J P, Gerdyukov, L N, Gokieli, R, Golob, B, Gopal, Gian P, Gorn, L, Górski, M, Guz, Yu, Gracco, Valerio, Graziani, E, Green, C, Grefrath, A, Gris, P, Grosdidier, G, Grzelak, K, Gumenyuk, S A, Gunnarsson, P, Günther, M, Guy, J, Hahn, F, Hahn, S, Hajduk, Z, Hallgren, A, Hamacher, K, Harris, F J, Hedberg, V, Henriques, R P, Hernández, J J, Herquet, P, Herr, H, Hessing, T L, Heuser, J M, Higón, E, Hilke, Hans Jürgen, Hill, T S, Holmgren, S O, Holt, P J, Holthuizen, D J, Hoorelbeke, S, Houlden, M A, Hrubec, Josef, Huet, K, Hultqvist, K, Jackson, J N, Jacobsson, R, Jalocha, P, Janik, R, Jarlskog, C, Jarlskog, G, Jarry, P, Jean-Marie, B, Johansson, E K, Jönsson, L B, Jönsson, P E, Joram, Christian, Juillot, P, Kaiser, M, Kapusta, F, Karafasoulis, K, Karlsson, M, Karvelas, E, Katsanevas, S, Katsoufis, E C, Keränen, R, Khokhlov, Yu A, Khomenko, B A, Khovanskii, N N, King, B J, Kjaer, N J, Klapp, O, Klein, H, Klovning, A, Kluit, P M, Köne, B, Kokkinias, P, Koratzinos, M, Korcyl, K, Kostyukhin, V, Kourkoumelis, C, Kuznetsov, O, Krammer, Manfred, Kreuter, C, Kronkvist, I J, Krumshtein, Z, Krupinski, W, Kubinec, P, Kucewicz, W, Kurvinen, K L, Lacasta, C, Laktineh, I, Lamsa, J, Lanceri, L, Lane, D W, Langefeld, P, Lapin, V, Laugier, J P, Lauhakangas, R, Leder, Gerhard, Ledroit, F, Lefébure, V, Legan, C K, Leitner, R, Lemonne, J, Lenzen, Georg, Lepeltier, V, Lesiak, T, Libby, J, Liko, D, Lindner, R, Lipniacka, A, Lippi, I, Lörstad, B, Loken, J G, López, J M, Loukas, D, Lutz, P, Lyons, L, MacNaughton, J N, Maehlum, G, Mahon, J R, Maio, A, Malmgren, T G M, Malychev, V, Mandl, F, Marco, J, Marco, R P, Maréchal, B, Margoni, M, Marin, J C, Mariotti, C, Markou, A, Martínez-Rivero, C, Martínez-Vidal, F, Martí i García, S, Masik, J, Matorras, F, Matteuzzi, C, Matthiae, Giorgio, Mazzucato, M, McCubbin, M L, McKay, R, McNulty, R, Medbo, J, Merk, M, Meroni, C, Meyer, S, Meyer, W T, Myagkov, A, Michelotto, M, Migliore, E, Mirabito, L, Mitaroff, Winfried A, Mjörnmark, U, Moa, T, Møller, R, Mönig, K, Monge, M R, Morettini, P, Müller, H, Münich, K, Mulders, M, Mundim, L M, Murray, W J, Muryn, B, Myatt, Gerald, Naraghi, F, Navarria, Francesco Luigi, Navas, S, Nawrocki, K, Negri, P, Neumann, W, Neumeister, N, Nicolaidou, R, Nielsen, B S, Nieuwenhuizen, M, Nikolaenko, V, Niss, P, Nomerotski, A, Normand, Ainsley, Oberschulte-Beckmann, W, Obraztsov, V F, Olshevskii, A G, Orava, Risto, Orazi, G, Österberg, K, Ouraou, A, Paganini, P, Paganoni, M, Pagès, P, Pain, R, Palka, H, Papadopoulou, T D, Papageorgiou, K, Pape, L, Parkes, C, Parodi, F, Passeri, A, Pegoraro, M, Peralta, L, Pernegger, H, Pernicka, Manfred, Perrotta, A, Petridou, C, Petrolini, A, Petrovykh, M, Phillips, H T, Piana, G, Pierre, F, Pimenta, M, Podobnik, T, Podobrin, O, Pol, M E, Polok, G, Poropat, P, Pozdnyakov, V, Privitera, P, Pukhaeva, N, Pullia, Antonio, Radojicic, D, Ragazzi, S, Rahmani, H, Rames, J, Ratoff, P N, Read, A L, Reale, M, Rebecchi, P, Redaelli, N G, Reid, D, Reinhardt, R, Renton, P B, Resvanis, L K, Richard, F, Richardson, J, Rídky, J, Rinaudo, G, Ripp, I, Romero, A, Roncagliolo, I, Ronchese, P, Roos, L, Rosenberg, E I, Roudeau, Patrick, Rovelli, T, Rückstuhl, W, Ruhlmann-Kleider, V, Ruiz, A, Rybicki, K, Saarikko, H, Sacquin, Yu, Sadovskii, A, Sahr, O, Sajot, G, Salt, J, Sánchez, J, Sannino, M, Schimmelpfennig, M, Schneider, H, Schwickerath, U, Schyns, M A E, Sciolla, G, Scuri, F, Seager, P, Sedykh, Yu, Segar, A M, Seitz, A, Sekulin, R L, Serbelloni, L, Shellard, R C, Siegrist, P, Silvestre, R, Simonetti, S, Simonetto, F, Sissakian, A N, Sitár, B, Skaali, T B, Smadja, G, Smirnov, N, Smirnova, O G, Smith, G R, Sosnowski, R, Souza-Santos, D, Spassoff, Tz, Spiriti, E, Sponholz, P, Squarcia, S, Stampfer, D, Stanescu, C, Stanic, S, Stapnes, Steinar, Stavitski, I, Stevenson, K, Stocchi, A, Strauss, J, Strub, R, Stugu, B, Szczekowski, M, Szeptycka, M, Tabarelli de Fatis, T, Tavernet, J P, Chikilev, O G, Thomas, J, Tilquin, A, Timmermans, J, Tkatchev, L G, Todorov, T, Todorova, S, Toet, D Z, Tomaradze, A G, Tomé, B, Tonazzo, A, Tortora, L, Tranströmer, G, Treille, D, Tristram, G, Trombini, A, Troncon, C, Tsirou, A L, Turluer, M L, Tyapkin, I A, Tyndel, M, Tzamarias, S, Überschär, B, Ullaland, O, Uvarov, V, Valenti, G, Vallazza, E, van Apeldoorn, G W, van Dam, P, Van Eldik, J, Van Lysebetten, A, Vassilopoulos, N, Vegni, G, Ventura, L, Venus, W A, Verbeure, F, Verlato, M, Vertogradov, L S, Vilanova, D, Vincent, P, Vitale, L, Vlasov, E, Vodopyanov, A S, Vrba, V, Wahlen, H, Walck, C, Weierstall, M, Weilhammer, Peter, Weiser, C, Wetherell, Alan M, Wicke, D, Wickens, J H, Wielers, M, Wilkinson, G R, Williams, W S C, Winter, M, Witek, M, Wlodek, T, Woschnagg, K, Yip, K, Yushchenko, O P, Zach, F, Zaitsev, A, Zalewska-Bak, A, Zalewski, Piotr, Zavrtanik, D, Zevgolatakos, E, Zimin, N I, Zito, M, Zontar, D, Zucchelli, G C, Zumerle, G“…A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. …”
Publicado 1996
Enlace del recurso
Enlace del recurso
-
270“…The total cross sections may be obtained with two numerical integrations.…”
Enlace del recurso
Enlace del recurso
-
271por Clayton, M.A.“…A homothetic symmetry is imposed on the fundamental tensor, and the resulting autonomous system is numerically integrated. Near the critical point (between the collapsing and non-collapsing spacetimes) the system displays an approximately periodic alternation between collapsing and dispersive epochs.…”
Publicado 1997
Enlace del recurso
Enlace del recurso
-
272por Elmfors, Per“…Secondly, we derive the dispersion relations directly from the Hard Thermal Loop effective action, which allows for an exact solution (i.e. to all orders in the external field), up to the last numerical integrals.…”
Publicado 1995
Enlace del recurso
-
273“…We propose a method for computing numerically integrals defined via $i \epsilon $ deformations acting on single-pole singularities. …”
Enlace del recurso
Enlace del recurso
-
274“…RBFN reduce the number of numerical integrations by replacing derivatives with slopes derived from the distribution of searching points. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Texto -
275por Shiel, M G“…Many reconstruction and simulation programs exist at CERN which contain subroutines for numerically integrating the equations of motion of a particle in a magnetic field. …”
Publicado 1975
Enlace del recurso
-
276“…Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
277por Titze, Malte“…To guarantee long-term reliability in the predictions of a numerical integrator, it is a well-known requirement that the underlying map has to be symplectic. …”
Publicado 2016
Enlace del recurso
Enlace del recurso
-
278“…We consider phase separation in nonequilibrium Bose gas with an attractive interaction between the particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of Bose-Einstein condensate suspended in uncondensed gas. …”
Enlace del recurso
Enlace del recurso
-
279“…The remaining numerical integrations are twofold (for leptonic variables) or onefold (for all other variables). …”
Enlace del recurso
Enlace del recurso
-
280por Bardin, Dmitri Yu., Christova, P., Jack, M., Kalinovskaya, L., Olchevski, A., Riemann, S., Riemann, T.“…A flexible treatment of complete O(alpha) QED corrections and of some higher order contributions is made possible with three calculational chains containing different realistic sets of restrictions in the photon phase space. Numerical integrations are at most one-dimensional. Complete O(alpha) weak loop corrections supplemented by selected higher-order terms may be included. …”
Publicado 1999
Enlace del recurso
Enlace del recurso