-
61“…ABBREVIATIONS: ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRABP2: cellular retinoic acid binding protein 2; LIR: MAP1LC3/LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SNIPER: specific and nongenetic IAP-dependent protein eraser; SQSTM1/p62: sequestosome 1; ULK: unc-51 like autophagy activating kinase…”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
62por O’Connell, Kyle A., Yosufzai, Zelaikha B., Campbell, Ross A., Lobb, Collin J., Engelken, Haley T., Gorrell, Laura M., Carlson, Thad B., Catana, Josh J., Mikdadi, Dina, Bonazzi, Vivien R., Klenk, Juergen A.“…We benchmarked six variant calling pipelines, including two germline callers (HaplotypeCaller and DeepVariant) and four somatic callers (Mutect2, Muse, LoFreq, SomaticSniper). RESULTS: We achieved up to 65 × acceleration with germline variant callers, bringing HaplotypeCaller runtimes down from 36 h to 33 min on AWS, 35 min on GCP, and 24 min on the NVIDIA DGX. …”
Publicado 2023
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
63por Rudd, Meghan L., Hansen, Nancy F., Zhang, Xiaolu, Urick, Mary Ellen, Zhang, Suiyuan, Merino, Maria J., Mullikin, James C., Brody, Lawrence C., Bell, Daphne W.“…We exome sequenced 15 late-stage (stage III or IV) non-ultramutated EECs and paired non-tumor DNAs; somatic variants were called using Strelka, Shimmer, SomaticSniper and MuTect. Additionally, somatic mutation calls were extracted from The Cancer Genome Atlas (TCGA) data for 66 late-stage and 270 early-stage (stage I or II) non-ultramutated EECs. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
64por Garcia-Prieto, Carlos A, Martínez-Jiménez, Francisco, Valencia, Alfonso, Porta-Pardo, Eduard“…RESULTS: Here, we quantify the impact of variant calling decisions by comparing the results obtained in three important analyses of cancer genomics data (identification of cancer driver genes, quantification of mutational signatures and detection of clinically actionable variants) when changing the somatic variant caller (MuSE, MuTect2, SomaticSniper and VarScan2) or the strategy to combine them (Consensus of two, Consensus of three and Union) across all 33 cancer types from The Cancer Genome Atlas. …”
Publicado 2022
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
65“…To help fill this gap, we studied the probability estimation performance of non-professional subjects under four different real-world problem scenarios: (i) Estimating the probability of cancer in a mammogram given the relevant evidence from a computer-aided cancer detection system, (ii) estimating the probability of drunkenness based on breathalyzer evidence, and (iii & iv) estimating the probability of an enemy sniper based on two different sets of evidence from a drone reconnaissance system. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
66“…In present study, we used a battleground scenario where a sniper-scope picture was the background, a target picture was a go signal, and a nontarget picture was a stop signal. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
67“…In the past, number of mutations calling techniques has been developed that include MuTect2, MuSE, Varscan2, and SomaticSniper. In this study, an attempt has been made to benchmark the potential of these techniques in predicting the prognostic biomarkers for liver cancer. …”
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
68Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callerspor Wang, Qingguo, Jia, Peilin, Li, Fei, Chen, Haiquan, Ji, Hongbin, Hucks, Donald, Dahlman, Kimberly Brown, Pao, William, Zhao, Zhongming“…METHODS: We used whole genome sequencing (Illumina Genome Analyzer IIx platform) of a melanoma sample and matched blood, whole exome sequencing (Illumina HiSeq 2000 platform) of 18 lung tumor-normal pairs and seven lung cancer cell lines to evaluate six tools for sSNV detection: EBCall, JointSNVMix, MuTect, SomaticSniper, Strelka, and VarScan 2, with a focus on MuTect and VarScan 2, two widely used publicly available software tools. …”
Publicado 2013
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
69por Hofmann, Ariane L., Behr, Jonas, Singer, Jochen, Kuipers, Jack, Beisel, Christian, Schraml, Peter, Moch, Holger, Beerenwinkel, Niko“…RESULTS: Using simulations based on kidney tumor data, we compared the performance of nine state-of-the-art variant callers, namely deepSNV, GATK HaplotypeCaller, GATK UnifiedGenotyper, JointSNVMix2, MuTect, SAMtools, SiNVICT, SomaticSniper, and VarScan2. The comparison was done as a function of variant allele frequencies and coverage. …”
Publicado 2017
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto -
70por Thangavelu, Bharani, LaValle, Christina R., Egnoto, Michael J., Nemes, Jeffrey, Boutté, Angela M., Kamimori, Gary H.“…Methods: Study participants were enrolled in .50-caliber sniper rifle training and exposed to mild OP (peak pressure 3.8–4.5 psi, impulse 19.27–42.22 psi-ms per day) for three consecutive days (D1–D3). …”
Publicado 2020
Enlace del recurso
Enlace del recurso
Enlace del recurso
Online Artículo Texto